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The asymptotic distribution of the instrumental variable
estimators when the instruments are not correlated with the
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Abstract

When the instruments are irrelevant, the IV estimator is neither consistent nor asymptotically normal. This
paper calculates the mean of its asymptotic distribution and shows that it equals the probability limit of the OLS
estimator.  2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A number of recent papers, including Bound et al. (1995) and Staiger and Stock (1997), have
considered instrumental variable (IV) estimators when the instruments are weak, in the sense that the
correlation between the instruments and the regressors is low. In this paper, we consider the extreme
case that the instruments are completely irrelevant. In this case we can prove the following interesting
result: the mean of the asymptotic distribution of the IV estimator is the same as the probability limit
of the OLS estimator. Thus, as might be expected, irrelevant instruments do not remove the
least-squares bias.

To be specific, consider the linear model y 5 Xb 1 ´ (in matrix notation) where ´ is a T 31 random
vector with mean zero, X is a T 3 K random matrix of regressors, and b is a K31 parameter. It is
well known that when X is correlated with ´ , the ordinary least-squares (OLS) estimator is nott t

consistent. More specifically, under the regularity conditions that ensure the convergence of the
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21 21statistics T X9X and T X9´ in probability, the OLS estimator converges in probability as T → ` to
219b 1 (EX X ) EX ´ , which is different from b , the true parameter, unless EX ´ 50.0 t t t t 0 t t

To obtain a consistent estimator, one possibility is instrumental variable estimation. Good
instruments Z (T 3 L) are those which satisfy:

21(i) T Z9Z converges in probability to a nonrandom, nonsingular matrix;
21(ii) T Z9X converges in probability to a nonrandom matrix with full column rank;
21 / 2(iii) T Z9´ converges in distribution to a normal random vector with zero mean.

When the instruments are good, the IV estimator is consistent and asymptotically normal.
Here we are concerned with the case that condition (ii) fails. Suppose that L $ K, so that there are

enough instruments, but the instruments (Z) are not strongly correlated with the regressors (X).
Specifically, let the reduced form for X be:

X 5 ZP 1V (1)

Staiger and Stock (1997) consider the case that P 5 P 5 C /œT, with C a L3K matrix of constants.T

They call this the case of weak instruments. In this case the correlation between X and Z is of ordert t
21 / 2 ˆT , and condition (ii) fails. Staiger and Stock show that with weak instruments b , the IVIV

ˆestimator, does not have a probability limit but rather b 2b converges to a non-normal randomIV 0
ˆvariable. The mean of the asymptotic distribution of b 2b is non-zero, so that with weakIV 0

instruments there is asymptotic bias. This bias is in the same direction as the bias of OLS.
In this paper we consider the case of irrelevant instruments, which are uncorrelated with the

regressors. This is a special case of Staiger and Stock, corresponding to C50 so that P 50 in the
reduced form (1) for all T. In this case we show that the mean of the asymptotic distribution of

ˆ ˆ(b 2b ) is the same as (plimb 2b ), the asymptotic bias of the OLS estimator.IV 0 OLS 0

2. The limit distribution

Consider a linear model in matrix notation

y 5 X8b 1 Wg 1 ´ (2)

where y and X8 are, respectively, a T 31 vector of dependent variables and a T 3 K matrix of the
endogenous regressors, W is a T 3 G matrix of exogenous regressors, the first column of which is a
vector of ones, ´ is the vector of errors, and b and g are the parameters to be estimated.

Consider a T 3 L random matrix Z8 of ‘instruments’. For any matrix A with full column rank, let
21P 5 A(A9A) A9. Let X 5 (I 2 P )X8 and Z 5 (I 2 P )Z8. Thus X is the part of the endogenousA W W

regressors not explained by the exogenous regressors, and similarly Z is the part of the ‘instruments’
not explained by the exogenous regressors.

We make the following ‘high level’ assumptions.

21 21 21Assumption 1. T X9X, T ´9´, and T Z9Z converge in probability to finite, nonrandom,
21nonsingular matrices, and T X´ converges to a nonrandom matrix.

21Let S 5 plimT (X,´)9(X,´). It has submatrices S , S , and s , which are the probability limitsXX X´ ´e
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21 21 21 21of T X9X, T X9´, and T ´9´, respectively. Also let V 5 plimT Z9Z. Assumption 1 can be
regarded as the implication of a law of large numbers under more primitive assumptions on the
sequences. For example, when the sequence (´ , X 89, Z 89)9 is i.i.d. and its second moment exists,t t t

21 219 9 9 9S 5 EX 8X 89 2 EX 8W (EWW ) EW X 89, S 5 EX 8´ 2 EX 8W (EWW ) EW ´ 5 EX 8´ , s 5XX t t t t t t t t X´ t t t t t t t t t t ´e
2 219 9E´ , and V 5 EZ 8Z 89 2 EZ 8W (EWW ) EW Z 89.t t t t t t t t t

21 / 2 21 / 2Let r 5 S S s which is a multivariate correlation coefficient. A key assumption is theXX X´ ´e

irrelevance of Z as instruments for X, as follows:

d21 / 2 1 / 2 1 / 2 1 / 2Assumption 2. T Z9(X, ´) →V (jS , hs ) where vec(j, h) is a multivariate centeredXX ´e

normal with E vec(j ) vec(j )9 5 I, Ehh9 5 I and E vec(j )h9 5 r ^ I.
p

21Note that Assumption 2 implies T Z9X →0, which may agree with an intuitive definition of
irrelevant instruments. Also, this assumption can be regarded as the implication of a central limit
theorem under more primitive assumptions, as above.

ˆNow let b be the estimate of b in Eq. (2), when estimation is by IV using (Z8, W ) as instruments.IV

It is readily shown that

21 21 21
b̂ 2 b 5 [X9Z(Z9Z) Z9X] X9Z(Z9Z) Z9´ (3)IV 0

1 / 2 21ˆBy dividing Z9Z by T, and Z9X and Z9´ by T , we observe that b 2 b is a function w of (T Z9Z,IV 0
21 / 2 21 / 2 L3L L3K L31 K31T Z9X, T Z9´), where w : R 3R 3R →R is defined by w(V, A, b) 5

21 21 21(A9V A) A9V b. Obviously, w is measurable and is almost surely continuous in the limit. Here
21continuity is assured by the nonsingularity of the limit of T Z9Z and the almost sure full column

21 / 2rank of the limit of T Z9X. Therefore, we apply the continuous mapping theorem to get the
following result.

Theorem 1. Under Assumptions 1 and 2,

d 21 / 2 21 1 / 2˜b̂ →b 5 b 1 S (j 9j ) j 9hs (4A)IV asy 0 XX ´e

or equivalently,

d1 / 2 21 / 2 21˜ˆ ˆd 5 S (b 2 b )s →d 5 (j 9j ) j 9h (4B)XX IV 0 ´e asy

We note that the result in (4A) is the same as Eq. (2.5) of Staiger and Stock (1997, p. 562) when
C50 (and therefore l50 in (2.3a) and (2.3b)).

˜We now calculate the density of d as follows.asy

˜Theorem 2. Under Assumptions 1 and 2, the density of d isasy

21 2(L11) / 2I r I2K / 2f(d) 5 C ? (1 2 r9r) (I d) (5)U US D S DK,L r9 1 d9

where

21L 1 1 L 2 K 1 12(L21)(K21) / 2 2K / 2 S]]D S]]]]DC 5 2 p G G .K ,L 2 2
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Proof. See Appendix A.

Given K (the dimension of X ) and L (the dimension of Z ), the density depends upon r only. As ist t

mentioned in Phillips (1980), this density is similar to the multivariate t distribution. The first moment
˜of d exists as long as L is strictly greater than K, and more generally its integer moments exist up toasy

the degree of over-identification (see Phillips, 1980, p. 870).

3. The relationship with the OLS estimator

We are now in a position to prove our main result.

˜Theorem 3. Suppose L . K. Then under Assumptions 1 and 2, the mean of b is equal to theasy

probability limit of the OLS estimator.

˜Proof. We observe that the density of d in (4B) is symmetric around r, the correlation coefficient ofasy
˜the endogenous regressors and the error. Furthermore, if L.K, the mean of d exists. Therefore, ifasy

˜L.K, Ed 5r. Thenasy

21 / 2 1 / 2˜ ˜Eb 5 b 1 S Ed sasy 0 XX asy ´e

21 / 2 1 / 2
5 b 1 S rs0 XX ´e (6)

21
5 b 1 S S0 XX X´

ˆ5 plim b .OLS

˜An alternative proof that does not depend on the exact form of the density of d is as follows.asy
21˜When the mean of d 5 (j 9j ) j 9h exists,asy

21 21E(j 9j ) j 9h 5 E(j 9j ) j 9E(huj ) (7)

by the law of iterated expectations. But since E vec(j ) vec(j )9, E vec(j )h9, and Ehh9 are,
respectively, equal to I ^ I, r ^ I, and I,

21Ehuvec(j ) 5 (r9 ^ I)(I ^ I) vec(j ) 5 jr. (8)

(For the operations involved with the Kronecker product and vec operators, see Magnus and
21 21 / 2 1 / 2˜ ˜Neudecker (1988, Ch. 2).) Hence, E(j 9j ) j 9h 5 r. It follows that Eb 5 b 1 S Ed s 5asy 0 XX asy ´´

21
b 1 S S , which is equal to the probability limit of the OLS estimator, as in the original proof.0 XX X´

4. Conclusion

In this paper, we answered some questions about the IV estimator using irrelevant instruments in
linear models. We saw that the IV estimator is not consistent but converges to a nondegenerate
distribution which is similar to a multivariate t distribution. When the number of instruments
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(excluding the exogenous regressors) is strictly greater than the number of endogenous regressors, the
mean of the asymptotic distribution exists and is equal to the probability limit of the OLS estimator.

Appendix A. Proof of Theorem 2

First, observe that the rows of the L 3 (K 1 1) matrix (j, h) are a random sample from N(0, J)
where

I r
J 5 .S Dr9 1

Thus, (j, h)9(j, h) has a K 1 1 dimensional central Wishart distribution with L degrees of freedom on
the covariance matrix J. When L $ K 1 1, its density at the point j 9j 5 B , j 9h 5 b , and h9h 5 b is1 2 3

21L2L(K11) / 2 2L / 2 (L2K22) / 2 21S]Dg(B ,b ,b ) 5 2 G (1 2 r9r) uBu exph 2 1/2 tr J Bj (A.1)1 2 3 K11 2

where

B b1 2B 5 and GS D n9b b2 3

is the multivariate gamma function defined as
n j 2 1n(n21) / 4 S ]]DG (a) 5 p P G a 2 . (A.2)n 2j51

See Johnson and Kotz (1972, p. 162).
Following Phillips (1980), consider the one-to-one mapping c on the set of K11 dimensional, real,

symmetric, positive definite matrices defined as

21B b B B b1 2 1 1 2
c : → (A.3)S D S D21 219 9 9b b b B b 2 b B B2 3 2 1 3 2 1 3

21Then the inverse c is

A d A A d1 1 121
c : → (A.4)S D S Dd9 a d9A a 1 d9A d3 1 3 1

whose Jacobian turns out to be uA u. Therefore, by the change-of-variable technique, the density of the1

symmetric random matrix, which is defined such that the upper-left K3K diagonal block is j 9j, the
21lower-right 131 diagonal block is h9h 2h9j(j 9j ) j 9h, and the upper-right K31 off-diagonal block

21˜is d 5 (j 9j ) j 9h, evaluated at the point such thatasy

21 21
j 9j 5 A , (j 9j ) j 9h 5 d, and h9h 2h9j(j 9j ) j 9h 5 a , (A.5)1 3

where A is symmetric, positive definite and a is positive, becomes1 3
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h(A ,d,a ) 5 g(A ,A d,a 1 d9A d) ? uA u1 3 1 1 3 1 1
21 (A.6)L2L(K11) / 2 2L / 2S]D5 2 G (1 2 rr9) ? H (A ) ? H (a )K11 1 1 3 32

where

(L2K ) / 2 211
]H (S) 5 uSu exph 2 tr S[I 1 (1 2 r9r) (d 2 r)(d 2 r)9]j (A.7)1 2

and

(L2K ) / 221 211
]H (x) 5 x exph 2 x(1 2 r9r) j (A.8)3 2

˜The density of d at d is obtained by integrating out A (symmetric and positive definite) and aasy 1 3

(positive) from (A.6). From the definition of the G(?) function, the integral of H (a ) in (A.6) over all3 3

positive a is equal to3

`

L 2 K(L2K ) / 2 (L2K ) / 2 S]]DE H (x)dx 5 2 (1 2 r9r) G (A.9)3 2
0

The integral of the matrix argumented function H (S) over all symmetric, positive definite matrices is1

obtained from the results in James (1964). Eqs. (25), (26), and (28) of James (1964, pp. 479–480)
imply that for any nonsingular real symmetric K3K matrix D,

a2(K11) / 2 2aE uSu exph 2 tr SDjdS 5 G (a)uDu (A.10)K

S.0

where the integral is taken over all symmetric, positive definite K3K matrices. Thus, we have the
evaluation

L 1 1(L11) / 2 21 2(L11) / 2S]]DE H (S)dS 5 2 G ? uI 1 (1 2 r9r) (d 2 r)(d 2 r9)u (A.11)1 K 2
S.0

The desired density (5) is obtained by combining Eqs. (A.6), (A.9), and (A.11).
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