"Expectations Hypothesis Tests in the Presence of Model Uncertainty"

Erdenebat Bataa, Dong H. Kim, and Denise R. Osborn

Discussion Paper No. 07-03 (April 2007)
Expectations Hypothesis Tests in the Presence of Model Uncertainty

Erdenebat Bataa
Centre for Growth and Business Cycles Research, Economics, University of Manchester

Dong H. Kim
Dept. of Economics, Korea University and Economics, University of Manchester

Denise R. Osborn*
Centre for Growth and Business Cycles Research, Economics, University of Manchester

Revised: April 2007

* Corresponding author. Denise Osborn, Centre for Growth and Business Cycles Research, Economics, School of Social Sciences, University of Manchester, Oxford Road, Manchester, UK, M13 9PL. Email: denise.osborn@manchester.ac.uk, Tel: +44(0)161-275-4861. Details of other authors: Erdenebat Bataa, Email: e.bataa@manchester.ac.uk, Tel: +44(0)161-275-4860, Dong Heon Kim, Email: dongkim@korea.ac.kr, Tel: +82-2-3290-2226.

Acknowledgements: The authors would like to thank Chris Orme, Lucio Sarno, Simon Peters and participants in the Econometrics Seminar at the University of Manchester, in the Royal Economic Society Annual Conference 2007, and in the 2007 Korean Economic Association Meeting for their useful comments. Erdenebat Bataa would like to acknowledge financial assistance from the University of Manchester and the Open Society Institute. Dong Heon Kim is grateful for the Korea University Grant.
Expectations Hypothesis Tests in the Presence of Model Uncertainty

Abstract

We extend vector autoregressive (VAR) model based expectations hypothesis tests of the term structure by relaxing some specification assumptions in order to reflect model uncertainty. Firstly, the wild bootstrap is used to allow for conditional heteroskedasticity of unknown form in the VAR residuals. Secondly, the model selection procedure is endogenized in the bootstrap replications and supplemented with a robust multivariate autocorrelation test. Finally, a stationarity correction is introduced to prevent the bias corrected VAR coefficients from becoming explosive. When the new methodology is applied to extensive US term structure data it emerges that the model uncertainty goes a long way in explaining the empirical rejections of the theory.

JEL classification: G10; E43.

Keywords: expectations hypothesis; term structure; wild bootstrap; conditional heteroskedasticity
I. Introduction

The interrelationship between interest rates of various maturities is a fundamental topic in economics and finance. One of the main theories put forward to explain this relationship is the expectations hypothesis (EH). Unfortunately, the theory has consistently been rejected with various statistical tests, especially at the short end of the maturity spectrum (see e.g. Campbell and Shiller 1991, Bekaert and Hodrick 2001 and Sarno, Thonton and Valente, 2007).

However, a recent strand of the literature points to the possibility that the use of asymptotic critical values may have lead to these rejections. In terms of the VAR based tests most early studies apply either Sargent’s (1979) Likelihood Ratio test or Campbell and Shiller’s (1987) Wald test, the latter of which had perhaps been used most often in the previous literature. In their recent seminal paper, Bekaert and Hodrick (2001, B & H thereafter) suggest a Lagrange Multiplier (LM) test and show it has better finite sample properties than the Wald and Likelihood Ratio based Distance Metric tests,. The B & H methodology is fast gaining popularity and is adopted, for example, in Bekaert, Wei and Xing (2007), and Sarno, Thornton and Valente (2007).

In a related but different statistical testing framework Carriero, Favero and Kaminska (2006) and Favero (2006) find supporting evidence for the EH once uncertainty faced by the investors is better reflected in the test by using real-time data. The present paper develops on this issue of uncertainty, also stressed in Hansen (2005), by extending the B & H methodology with a greater recognition of model uncertainty in the specification of the VAR, and then applies it to re-examine the EH for US term structure data. In particular, finite sample inferences drawn to date from the LM test rely on either an i.i.d. bootstrap or a GARCH model of the VAR residuals. Goncalves and
Kilian (2004) argue that i.i.d. re-sampling is inaccurate in the presence of conditional heteroskedasticity, which characterizes many financial time series, while GARCH models can suffer from misspecification problems, see e.g. Wolf (2000) and Belsley (2002). To avoid these problems, we propose the application of a wild bootstrap scheme, which permits heteroskedasticity of unknown form while retaining the contemporaneous error correlation. Further, applications of the i.i.d. bootstrap assume a known VAR order, which does not reflect true uncertainty. We not only endogenize the VAR lag length selection using an information criterion, but also supplement this with an application of a multivariate extension of the Godfrey and Tremayne (2005) autocorrelation test, as the performance of the former may not be reliable in the presence of conditional heteroskedasticity. In addition, we introduce a stationarity correction in the VAR and randomize the initial condition.

Our extended method is applied to US term structure data across the whole maturity spectrum, as in Campbell and Shiller (1991) and Sarno, et al. (2007), from January 1952 to December 2003 and in sub-periods that exclude the monetary policy experiment of 1979-1982. Although we find that the EH tends to be rejected at the short end of the maturity spectrum, in line with much of the previous literature, the number of rejections overall is fewer in our analysis suggesting that at least some of the empirical rejections are due to the stringent model assumptions, not necessarily due to the EH.

The paper has five sections. Section 2 outlines the implications of the EH theory for interest rates and discusses tests of the theory in a VAR framework, focusing on the

1 See Monte Carlo evidence of Basci and Zaman (1998), Kyriazidou (1998) and Ng and Perron (2005) on the performance of various model selection criteria in this situation.
B & H methodology. Our methodological extensions are discussed in Section 3 and applied in Section 4, while Section 5 concludes.

II. Expectations hypothesis theory and tests

This section first describes the EH in part A before considering the testing methodology in VAR framework in part B.

A. Expectations hypothesis theory

According to the EH, a long term interest rate equals the sum of a constant term premium and an average of current and expected future short term interest rates over the life of the long term interest rate. That is, in a linearized version of the EH (see Shiller, 1979)

\[
R_{n,t} = \frac{1}{k} \sum_{i=0}^{k-1} E_t R_{m,t+i} + \pi_{n,m} ;
\]

where \(R_{n,t} \) and \(R_{m,t} \) are long and short rates at time \(t \) respectively, \(E_t R_{m,t+i} \), \(i = 0, 1, 2, \ldots, k-1 \), is the expectation formed at time \(t \) of short rates at \(t+mi \) and \(\pi_{n,m} \) is the term premium which can vary across maturities but is assumed constant through time. Since the EH places no restriction on \(\pi_{n,m} \), this term can be ignored by working with demeaned series. In (1), \(k = n/m \), the maturity multiple, is defined to be an integer, with \(m \) the maturity of a shorter rate and \(n \) the maturity of a longer rate.

Equation (1) is rarely tested directly, probably due to the empirical results that imply the series are integrated, in which case conventional statistical theory is not appropriate. Although yields cannot I(1) in a strict sense, e.g. because they never take non-positive values, their behavior closely resembles other aspects of integrated behavior, so it is often argued that treating them as if they are integrated is empirically
appropriate (see e.g. Hall, Granger and Anderson 1992). Moreover, it is often found that very persistent series with a root at least very close to unity are better approximated by I(1) processes than by stationary ones (see e.g. Stock 1997). Therefore a reformulation of (1) given in (2) is usually tested, which is based on the ability of the spread between long and short rates to predict future short rate changes.

\[
\sum_{i=1}^{k-1} \left(1 - \frac{i}{k}\right) \Delta^m E_t \Delta R_{m,t+m} = -\pi_{n,m} + S_{(n,m),t}
\] \hspace{1cm} (2)

where \(\Delta^m R_{m,t+m} = R_{m,t+m} - R_{m,t} \), \(S_{(n,m),t} = R_{n,t} - R_{m,t} \) and is obtained by subtracting \(R_{m,t} \) from both sides of equation (1). A conventional way of testing (2) is to impose rational expectations as \(R_{m,t+mi} = E_t R_{m,t+mi} + \nu_t+mi \), that posits a realization of a random variable is its conditional expectation plus an error term that is orthogonal to the information set used to form the expectation, and to regress the realized cumulative changes in the short rate on the spread and testing if the slope coefficient is statistically different from unity while allowing for a constant term and a moving average process of order \((n-m)\) in the errors of the regression.\(^2\)

B. VAR Approach

Recent literature concentrates on testing the theory in a VAR framework, as suggested in e.g. Sargent (1979) and Campbell and Shiller (1987, 1991). Assuming that

there exists a stationary vector stochastic process for \(y_t = [\Delta R_{m,t}, S_{(n,m),t}] \), then the demeaned process for \(y_t \) can be represented as a VAR of order \(p \).

\[
y_t = \sum_{i=1}^{p} A_i y_{t-i} + u_t.
\] (3)

Further, (3) can be written as a first order VAR in companion form such that \(z_t = Az_{t-1} + v_t \), where the companion matrix \(A \), of dimension \(2p \times 2p \), has the form:

\[
A = \begin{bmatrix}
A_1 & A_2 & \ldots & A_{p-1} & A_p \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{bmatrix},
\]

while \(z_t \) has \(2p \) elements, \(\mathbf{z}_t = [\mathbf{y}'_t, \mathbf{y}'_{t-1}, \ldots, \mathbf{y}'_{t-p+1}] \), \(v_t \) is the \(2p \) vector \([\mathbf{u}'_t, 0, 0, \ldots, 0] \), which is uncorrelated over time. Thus \(z_t \) summarizes the whole history of \(y_t \).

Now define vectors \(e_i, i = 1, 2 \), each of dimension \(2p \), with unity in the \(i^{th} \) position and zeros everywhere else such that \(e'_i z_t = \Delta R_{m,t} \) and \(e'_i z_t = S_{(n,m),t} \). Using these definitions, the spread predicted by the EH and its restrictions on VAR parameters can be shown to be, respectively,

\[
S^*_{(n,m),t} = e'_i A [I - \frac{m}{n} (I - A^n)(I - A^m)^{-1}] (I - A)^{-1} z_t
\] (4)

A conventional unit root analysis is carried out, available upon request, in which the null hypothesis of unit root can not be rejected for all interest rate series at conventional nominal levels of significance while the results for the first differences and the spreads seem to confirm that our VAR specification is stationary. Three spreads between 10 years and 1, 2 and 5 years provide evidence of non-stationarity. ADF test is not significant for at 5% for the second of these spreads and at 1% for the other two.
\[e'_z = e'_z A [I - \frac{m}{n} (I - A^n)(I - A^m)^{-1}](I - A)^{-1}. \] (5)

The restrictions in (5) are highly non-linear and, as mentioned above, are predominantly tested by asymptotic Wald tests, even though these have some undesirable properties in finite samples (see e.g. Gregory and Veall, 1985, Dagenais and Dufour, 1991). In particular, the Wald statistic is not invariant to how one specifies the null hypothesis and, potentially, to units of measurement; Shea (1992) provides a numerical example of how one can reach different conclusions on testing algebraically equivalent EH restrictions using Wald tests.

B & H (2001) suggest a Lagrange Multiplier (LM) test based on Newey and McFadden (1994) and show that the LM test has much better small sample properties than the Wald test in terms of size and power. They also consider the Likelihood Ratio based Distance Metric (DM) test, but prefer the LM test.

More relevant to this study is their suggestions to improve the performance of the asymptotic tests in finite samples. Firstly, B & H suggest correcting for the bias in the estimated VAR parameters using the bootstrap. More specifically, having specified the appropriate VAR order \(p \) and obtained the estimated unconstrained VAR parameter matrix, \(\hat{A} \), they use a data generating process (DGP)

\[y_t^* = \sum_{i=1}^{p} \hat{A}_i y_{t-i}^* + u_t^*, \] (6)

\(^4\) All three tests are asymptotically distributed as \(\chi^2(2p) \). See the original papers for their description.

\(^5\) Most estimators of the VAR parameters are, although consistent, biased in finite samples (see e.g. Tjostheim and Paulsen, 1983, Bekaert, Hodrick and Marshall, 1997).
where in this case $\hat{A} = \hat{\Sigma}$ and $u_i \sim \text{i.i.d. bootstrap of the estimated residuals}$, to generate b samples of artificial data. Estimating $\text{VAR}(p)$ on each of these yields unconstrained estimates $\hat{A}_{M,i}, i = 1, \ldots, b$, and the bias estimate $\hat{B} = \hat{A} - \frac{1}{b} \sum_{i=1}^{b} \hat{A}_{M,i}$.

Finally, bias-corrected estimates are obtained as $\hat{A}_c = \hat{A} + \hat{B}$. To obtain bias-corrected parameter estimates that satisfy the null hypothesis, they use (6) again with $\hat{A} = \hat{A}_c$ and, as before, an i.i.d. bootstrap of the residuals to simulate a very long series (70,000 observations plus 1,000 starting values that are discarded), which is then subjected to satisfy (5) by an iterative procedure.

Secondly, B & H apply finite sample inference directly. Indeed, it is well documented that large sample inference can be misleading for finite samples (see e.g. Horowitz, 2001). The estimate of the bias-corrected constrained parameter matrix, \bar{A}_c, combined with an i.i.d bootstrap of the unrestricted residuals, is used as the bootstrap DGP to generate artificial null data sets of the actual sample size, plus 1000 observations that are discarded to attenuate the start-up effect. Using the same VAR order p as obtained from the actual data, an LM statistic, corresponding to the null in (5), is obtained from each bootstrap data set. This is repeated a large number of times, say d, with the empirical p-value then computed as the proportion of bootstrap LM test statistics that are larger than or equal to the sample statistic obtained from the observed data.6

6 Finite sample inferences from DM and Wald tests follow the same procedure, except the latter does not require iterations to satisfy (5).
B & H recognise the limitations of the i.i.d. bootstrap, and also examine test statistics obtained where conditional heteroskedasticity is allowed in the VAR residuals through a specific parametric factor GARCH model. In this case, the observed LM test statistic is compared to percentiles of the null distribution obtained using the estimated GARCH model rather than i.i.d. bootstrap of the residuals.

III. Extensions to B & H Methodology

In this section we suggest several extensions, motivated by recent developments in the model specification and bootstrap literature, to the B & H methodology in order to encompass more general situations. Our three principal extensions are: i) the use of wild bootstrap to allow for conditional heteroskedasticity in the residuals of the estimated model, which does not require any a priori parameterization, ii) imposition of a stationarity correction and randomizing the initial condition in the bias correction procedure, iii) interactive use of an endogenous lag order selection rule and a vector autocorrelation test, with the restricted residuals used for finite sample inference.

After outlining the wild bootstrap procedure, we discuss how our extensions are employed to improve the bias correction method of B & H and to conduct finite sample inference.

A. The wild bootstrap

The EH itself places no restriction on the distribution of the VAR disturbances. It is, however, common that the residuals from estimated models exhibit volatility clustering, especially when financial time series are used (see e.g. Bollerslev, Chou and
Kroner, 1992). As discussed above, the bias correction method in B & H (2001) relies on i.i.d. residuals, thus assuming away the presence of heteroskedasticity, whether of the unconditional or conditional form. However, they acknowledge possible conditional heteroskedasticity in the residuals for the purpose of finite sample inference, through the use of a VAR-GARCH model in addition to using i.i.d. bootstrap. But there is no solid reasoning behind why this specific form of volatility clustering model is used (Goncalves and Kilian, 2004), and even if this class of GARCH models is appropriate the precise form of the GARCH model is unknown, leading to the possibility of different results for different specifications (Wolf 2000 and Belsley, 2002). In contrast, we avoid these problems through using the wild bootstrap for both bias correction and to obtain empirical *p*-values.

The wild bootstrap we use was developed in Liu (1988) following recommendations in Wu (1986) and Beran (1986). The particular form we employ is the recursive design wild bootstrap, which has better small sample properties than several other resampling schemes and is comparable with the i.i.d. bootstrap when the errors are indeed i.i.d.; see, e.g., Goncalves and Kilian (2004). Therefore, there appears to be minimal cost in applying the wild bootstrap when the disturbances satisfy the i.i.d. assumption.

For given VAR parameter matrices \(\tilde{A}_i, i=1\ldots p \), and corresponding disturbance vector \(\tilde{u}_i \), a recursive design wild bootstrap sample is generated as in (6) with

7 By this we mean that the wild bootstrap allows the possibility of structural breaks in the disturbance variance-covariance matrix, as well as allowing for conditional heteroscedasticity of the multivariate GARCH form.
\[u_t^* = \omega_t \hat{u}_t, \ t = 1, \ldots, T, \] in which the scalar random variable \(\omega_t \) satisfies \(E(\omega_t) = 0 \) and \(E(\omega_t^2) = 1 \). Following the evidence of performance in recent Monte Carlo studies of the wild bootstrap (Davidson and Flachaire, 2001, Godfrey and Orme, 2004, Godfrey and Tremayne, 2005), we specify \(\omega_t \) as having the Rademacher distribution, which takes the possible values of negative and positive unity with equal probabilities.

B. Bias correction

The bias correction of the VAR coefficient estimates is an important part of the B & H methodology. We develop B & H bias correction procedure in three ways.

Firstly, we introduce a stationarity correction, which is important because the asymptotic validity of B & H methodology relies on it. Interest rates are assumed to be \(I(0) \) in B & H (2001) and Sarno, Thornton and Valente (2007), the latter of which provides some unit root test results that support this assumption, and they include the level of interest rates in their VAR. Nevertheless, even if they are differenced, as in this study, the random nature of the bias correction does not guarantee that the bias-corrected, companion-form VAR coefficient matrix is stable\(^8\).

Our procedure ensures \(\lambda_{\max}(\hat{A}_c) < 1 \), where \(\lambda_{\max} \) is the largest eigenvalue of the estimated companion matrix after bias correction, through an additional step suggested by Kilian (1998b). This step computes \(\lambda_{\max}(\hat{A}_c) \) after bias adjustment. If \(\lambda_{\max}(\hat{A}_c) \geq 1 \), we set \(\hat{B}_i = \hat{B} \), \(\delta = 1 \) and \(i = 1 \), then define \(\hat{B}_{i+1} = \delta_i \hat{B}_i \) with \(\delta_{i+1} = \delta_i - 0.001 \). Finally,

\(^8\) It may be noted that the bias corrected restricted VAR parameter in Panel A of Table IV in B & H (2001) is unstable, i.e. the maximum eigenvalue is 1.078.
we set $\hat{A}_c = \hat{A}_{c,j}$ after iterating on $\hat{A}_{c,j} = \hat{A} + \hat{B}_j$, $i = 1, 2, \ldots$ until $\lambda_{\text{max}}(\hat{A}_{c,j}) < 1$. The adjustment has no effect asymptotically and does not restrict the parameter space of the OLS estimator, since it does not shrink the OLS estimate \hat{A} itself, but only its bias estimate. Alternatively one could ignore the cases that result in explosive parameters as in Carriero et al. (2006). But this will bias downward the persistency of the VAR. Bekaert et al. (2007) set eigenvalues to ± 0.99 whenever the parameters are explosive but their procedure is relevant only to the restricted VAR.

Secondly, we randomize the initial conditions. B & H discard the first p observations in each of the 100000 bootstrap replications in order to attenuate the start-up effect. However, as p can be one, this may not fully account for the uncertainty associated with the initial conditions. We therefore follow the suggestion of Stine (1987), by splitting the observed data into $T - p + 1$ overlapping blocks of length p and one of these is selected randomly as the starting point.

Finally, to bias correct the constrained VAR coefficient matrix used to generate empirical distribution of the test statistics, B & H (2001) use the i.i.d. bootstrap of the residuals and the bias corrected unconstrained VAR coefficients to generate a large sample of 70000 observations, which is subjected to the iterative process. This procedure seems ad hoc, and it is unclear whether any advantage can be gained by the artificial generation of a long time series using an i.i.d. bootstrap in the presence of conditional heteroskedasticity. Instead, we subject the actual data and the bias corrected unconstrained coefficient estimates to the iterative process directly, since Newey and McFadden (1994) show that consistency of the estimator is sufficient for the validity of their expansion.
C. Finite sample inference

In addition to employing the wild bootstrap rather than an i.i.d. bootstrap, our finite sample inference procedure differs from B & H in a number of respects.

Firstly, the B & H methodology assumes the lag order is unknown when the VAR of (3) is specified, but when obtaining an empirical *p value* the lag order is treated as known to be that specified from the actual data. However, it is often emphasized that the bootstrap world should reflect the actual world (see, e.g., Li and Maddala, 1996), and ignoring the uncertainty involved in determining the true lag order in finite samples might lead to spurious inference. Therefore, our procedure separately estimates the lag order for every bootstrap dataset generated, employing the same lag selection criterion as that used for the actual dataset. Although there is no difference asymptotically between endogenizing lag selection or not, since every consistent model selection criterion will then choose the right lag length almost surely, Kilian (1998a) shows that endogenous lag selection improves finite sample inference for impulse response analysis.

By the same argument, when estimating (3) on the artificial restricted data, the resulting estimated VAR coefficients should be bias corrected.

Secondly, we employ a more flexible approach in choosing the appropriate lag length p of the assumed VAR-DGP, which is important not only because the asymptotic distributions of test statistics depend on it, but also because a necessary condition for the validity of the bootstrap is the absence of autocorrelation in the VAR residuals. Although B & H (2001) provide residual-autocorrelation test results after choosing the VAR lag length by SIC to argue that autocorrelation is not a concern, the test they use is
univariate, applied to each individual equation of the VAR. Thus, their test potentially leads to the problem of mass significance, as discussed in Edgerton and Shukur (1999), and also omits the possibility of cross-equation residual autocorrelation. Moreover, the SIC model selection rule, like many others, implicitly relies on conditional homoskedasticity and is typically derived under conditional normality. The Monte Carlo studies of Basci and Zaman (1998), Kyriazidou (1998) and Ng and Perron (2005), examining the performance of various model selection criteria, greatly reduces our confidence that we can rely on SIC to choose appropriate lag lengths in all 48 models we examine, representing the full spectrum of the term structure, in contrast to only two in B & H (2001).\(^9\) We therefore employ a multivariate extension of the autocorrelation test robust to conditional heteroskedasticity of Godfrey and Tremayne (2005), some details of which are provided in Appendix A, to the residuals of the model, the first of which is specified by SIC, and increase the lag length by one if there is any evidence of autocorrelation. This is repeated until that lag length which ensures the absence of autocorrelation up to 12\(^{th}\) order.

Finally, since studies of Davidson and MacKinnon (1985) and Godfrey and Orme (2004) find that the use of the restricted residuals provides improvements in finite sample properties comparing with unrestricted ones, we use the former. That is, the bootstrap employs the residuals \(\bar{u}_i = y_i - \sum_{i=1}^{p} \sum_{j=1}^{n} A_{ij} y_{i-j} \) . Sarno et al. (2007) also use the restricted VAR residuals in their study.

\(^9\) Campbell and Shiller (1991) and Hardouvelis (1994) assume that the data is known to be generated by VAR(4), Thornton (2006) use SIC, while Shea (1992), and Sarno et al (2007) use AIC. Basci and Zaman (1998), Kyriazidou (1998) recommend using SIC when the VAR residuals are suspected to be contaminated with conditional heteroskedasticity.
As the computational costs of bias correction, model identification and application of autocorrelation tests at each bootstrap iteration is high, the number of iterations is 1000 for the bias correction (that is \(b \)) and 5000 for the empirical distribution of LM statistics (that is \(d \)) in this context, not 100000 and 25000 respectively as in B & H (2001), and Sarno et al. (2007).

IV. Empirical Results

In this section we describe the data and provide empirical results from our extended B & H methodology. All inferences are made at a 5% significance level.

A. Data and preliminary results

We use the continuously compounded zero coupon yield curve dataset of Sarno et al. (2007) that covers a period from January 1952 to December 2003. This is an update of the McCulloch and Kwon (1993) dataset, which is used in many studies, including Campbell and Shiller (1991) and Thornton (2006). In order to best reveal the effect of recognizing model uncertainty on the empirical results we consider exactly the same sample periods as in Sarno et al. (2007), the full sample and two sub-samples, January 1952 to December 1978 and January 1982 to Dec 2003. The maturities considered range from one month to a maximum of 120 months (10 years).

The authors would like to thank Dick van Dijk, Ruud Koning, Markus Kraetzig and especially Daniel Thornton for making their computer codes available on the Internet, modifications of which are used in this study. We also thank Daniel Thornton for providing the dataset.
Panel A of Table 1 shows the VAR lag orders chosen by SIC, separately selected for the entire sample and for the two sub-samples, for all maturity pairs considered. Tests were conducted for the presence of first order conditional heteroskedasticity in the VAR residuals using the multivariate ARCH-LM test statistic described in Doornik and Hendry (1997). Strong evidence of conditional heteroskedasticity was found in almost all cases, both in the unrestricted VAR residuals and also in the residuals after imposition of the EH restriction, pointing to the need to take account of conditional heteroskedasticity for valid inference. Since Goncalves and Killian (2004) show that the wild bootstrap has performance that is little inferior to that of the standard bootstrap even if the errors are indeed i.i.d., all subsequent analyses are based on the wild bootstrap.

Table 1 here

Table 2 provides LM test statistics for the null of no autocorrelation against the first order autocorrelation in the VAR residuals and their asymptotic and empirical p-values, when applied with the VAR order indicated by SIC. It is notable that the discrepancy between the asymptotic and empirical p-values is relatively small and the rejections of the null tend to occur almost exclusively in the first sub-period, rather than

11 The maximum lag length used is \(p_{\text{max}} = 12\left[T/100\right]^{1/4} \) and is supported in the Monte Carlo study of Schwert (1989).

12 The p-value for this test was almost always 0.00. The only exceptions to significance at 5% occurred for some maturity pairs at the longest end of the maturity spectrum, namely for maturity pair 12 and 120 months in the first sub-sample and 60 and 120 months in the second sub-sample. Full results are available from the authors on request.

13 See Appendix A for the description of the test and Godfrey and Tremayne (2005) for the use of wild bootstrap in estimating empirical p-values.
the second sub- or the whole samples. However, when the null is tested against higher order (up to 12th order) autocorrelation, the adequacy of SIC in ensuring that all dynamic mean relationships are captured by the VAR becomes more suspect. The result of increasing the lag length of the VAR chosen by SIC when there is any evidence of autocorrelation is reported in Panel B of Table 1, with the cases highlighted where the final lag lengths are different from the initial SIC choice.14 The fewest discrepancies are found over the whole sample, as one would expect given that SIC is consistent, but it is also notable across all samples that the lag length indicated by SIC often does not account for all autocorrelation when the longer maturity considered is relatively short.

Overall, the results indicate the danger of solely relying on SIC as the single lag selection rule across these models. Therefore, our empirical results in sub-section 4.3 are based on the augmented lag lengths.

Table 2 here

The importance of the stability correction we employ is shown in Table 3, where Panel A reports the number of iterations required to ensure stability for the unrestricted bias-corrected companion-form VAR parameters and Panel B gives the average number of iterations for the restricted bias-corrected parameters. It is clear that, without this correction, many bias-corrected estimates would have produced unstable models, invalidating inference based on the assumption of stability. There is also a marked pattern across the different sample periods. The modification has almost no effect in the second sub-sample, but the stability correction is employed much more often in other periods, especially in the first sub-sample.

14 This is a conservative strategy with respect to autocorrelation as the overall level of significance is less than 5% we use for individual tests.
B. Effect of lag length selection in the bootstrap

As discussed above, our bootstrap inference is designed to capture the uncertainty faced in the specification of the lag order in a VAR, while ensuring that the disturbances are uncorrelated. To indicate the effects of the various lag length treatments, Figure 1 shows the empirical distributions obtained for the various LM test statistic for the maturity pair of 1 and 3 years using data from January 1952 to December 1978. The asymptotic $\chi^2(6)$ distribution is also included for comparative purpose. When the VAR lag length is exogenous in the bootstrap world (that is, set equal to that estimated from the actual data) the empirical distribution closely matches the asymptotic one, implying there is little gain from the bootstrap in improving finite sample inference. However, as discussed above, Kilian (1998a) and others argue this lag treatment does not reflect the true uncertainty associated with choosing the lag length, which implies that this is not the appropriate finite sample distribution.

As can be seen from the right-hand panel of Figure 1, when the lag length selection is endogenized using SIC, the empirical distribution of the lag lengths in the bootstrap never extends beyond the lag estimated from the observed data. More specifically, although only 50% of the lags are estimated as 3, in contrast to 100% in the exogenous lag length procedure, the remaining half in the former case cluster on either 1 or 2 lags and no case exceeds 3. This is not specific to this maturity pair; indeed, the lag distributions for all maturity pairs either cluster at the one estimated from the actual observed data or extend only to that lag length. This reduction in uncertainty in the

15 The results for all maturity pairs can be obtained from the authors. The degrees of freedom is 6 as the lag is estimated to be 3, see Panel B, Table 1.
bootstrap has the consequence that the empirical distribution of the resulting LM statistic lies closer to the origin than that of the exogenous lag distribution. Thus, this procedure would reduce the number of rejections of the EH, compared to the use of either the asymptotic distribution or an exogenous lag length bootstrap.

Figure 1 here

However, applying our sequential lag ordering strategy, i.e. first choosing the lag order by SIC and modifying it when the autocorrelation test detects any evidence of autocorrelation up to 12th order, the lag distribution in the right-hand pane of Figure 1 becomes more symmetric around the actual lag in the bootstrap DGP. This increases the uncertainty associated with LM statistic and shifts its distribution to the right compared with the use of SIC alone.

Different lag length treatments in the bootstrap have important empirical consequences. In general, the proposed lag selection method will produce more favourable results for the EH than others we consider. For the specific maturity pair example illustrated in the distributions of Figure 1, the LM statistic estimated from the data is 13.29, with the corresponding 95% quantiles for the four graphed distributions being 12.14, 11.56, 15.08 and 12.59. In this case, the EH would be rejected using all distributions, except when the endogenous lag length selection rule is supplemented with the autocorrelation test. Nevertheless, we believe that our extended procedure is to be preferred because it replicates the procedure applied in analysis of the observed data and hence better captures the uncertainty associated with the value of the test statistic. This is also consistent with Hansen (2005) who emphasizes the importance of model uncertainty in empirical inference.
C. Results for EH tests

Finally, we turn to the results of our extended LM test of the EH for the US term structure, which are provided in Table 4, with cases of rejection of the EH highlighted. As can be seen from the table, the LM test does not always work, sometimes leading to non-convergence of the iterative procedure or instability of the restricted VAR coefficient matrix. The former problem is also reported in Sarno et al. (2007) and the latter is found in Bekaert et al. (2007). In our case, most non-convergences occur at the shortest end of the term structure and when the VAR lag lengths resulting from the application of the autocorrelation test are particularly large, such as 13 and 9 (see Panel B of Table 1). To obtain convergence in such cases, a restriction of maximum lag length of 5 is imposed.

Table 4 here

The first substantive conclusion emerging from the finite sample LM test is that the EH tends to be rejected at the short end of the term structure, consistent with Campbell and Shiller (1991) and Sarno et al. (2007), but the number of rejections are much less often. In particular, the former study rejects the EH whenever the maturity of the longer-term rate is below 3 or 4 years using data from January 1952 to February 1987 and the latter study, which uses exactly the same data and sample periods, provides rejections whenever is less than 2 years in most recent sub-period.

16 Results from DM and Wald tests are not reported to conserve space but available from the authors upon request.

17 Using a 1% level for the autocorrelation test results in lower lag lengths.
There are several cases where the EH is not rejected in any of the sub-samples yet being rejected in the full sample, that may seem inconsistent at first sight. These occur for the maturity pairs of 1&36, 2&12, 2&36, 3&9, 3&12 and 4&12 months. Two possible explanations offer themselves. The first is that the power of the test is low in small samples so that the null is rejected only with the largest sample size. Non-rejections in both sub-samples at maturity pairs 2&12, 3&9 and 3&12 are minor and turn into rejections if one had used 10% significance level. Secondly, in the sub-sample analysis we exclude a period of Jan 79- Dec 1981 that roughly coincide with the monetary policy experiment so fitting a VAR model over the whole sample period that covers potentially different three regimes and testing the theory is not expected to produce fully consistent results with the former analysis.

Finally, it should be noted that the use of the asymptotic distribution would result in substantially more rejections of the EH than the finite sample distribution, particularly over the whole sample period. Figure 1 also implies that this would also be true in relation to the use of exogenously specified lags, emphasizing again the importance of our extensions to the B & H methodology when testing the expectations hypothesis for the term structure.
V. Conclusion

This paper extends the vector autoregressive model (VAR) based expectations hypothesis tests of term structure considered in Bakaert and Hodrick (2001) by relaxing certain assumptions on the VAR model specification. Firstly, we use the wild bootstrap to allow for conditional heteroskedasticity in the VAR residuals without imposing any strict parameterization. Secondly, when making finite sample inferences, we not only endogenize the model selection procedure but also supplement this with an autocorrelation test, employ the restricted not the unrestricted VAR residuals and randomize the initial condition in the bootstrap replications to reflect the true uncertainty. Finally, a stationarity correction is introduced in order to take account of the possibility of obtaining explosive VAR parameter estimates after adjustment for finite sample bias.

When the modified B & H methodology is applied to an extensive US zero coupon term structure data ranging from 1 month to 10 years, we find evidence that some of the empirical rejections may have been due to the failure to account for model uncertainty not necessarily due to the EH, especially in small samples. We do find the theory is rejected at the short end of the maturity spectrum, in line with Campbell and Shiller (1991) and Sarno et al. (2007) but, overall, our results indicate that the EH provides a reasonable description of the term structure relationship in the US from the period since 1952, provided that separate pre-1979 and post-1982 sub-samples are employed and also provided that the shorter maturity of interest is at least three months.

An important type of uncertainty that is the subject of our future research is if the way the market forms its expectations of the future rates change over time and if that is indeed the case how often that happens. Currently we allow it to be different before
and after the monetary policy change of 1979-1982 but there may well be other events that are although less explicitly discussed in this literature but have an important impact on the market expectation.
Appendix A. Multivariate autocorrelation test robust to
conditional heteroskedasticity

In this appendix we describe the vector autocorrelation test of Godfrey and Tremayne
(2005) robust to conditional heteroskedasticity. Consider a general dynamic system of \(n \) stochastic equations, the residuals of which are suspected to have autocorrelation,

\[
Y_0 = Z_0 B_0 + U_0 \tag{A1}
\]

where

\[
Y_j = \left[y_{1:t}, \ldots, y_{T+j-1} \right]^{\prime}, \quad B_0 = \left[A_1, \ldots, A_p, \Pi \right]^{\prime}, \quad X = \left[x_1, \ldots, x_T \right]^{\prime},
\]

\[
U_j = \left[u_{1:t}, \ldots, u_{T+j-1} \right]^{\prime}, \quad Z_0 = \left[y_{-p}, \ldots, y_{-1}, X \right]^{\prime}, \quad y_t \text{ and } u_t \text{ are } (n \times 1), \quad x_t \text{ is } (m \times 1), \quad A_i \text{ is } (n \times n)
\]

and \(\Pi \) is \((n \times m)\), and this system reduces to a \(VAR(p) \) without an intercept when \(\Pi = 0 \) and to a static system when \(A_i = 0, \quad i = l, \ldots, p \). We assume all values of \(z \) satisfying

\[
\left| I - A_1 z - A_2 z^2 - \ldots - A_p z^p \right| = 0
\]

lie outside the Argond diagram and that observations \(y_{t-p} \) to \(y_0 \) are available for the lagged variables, leaving \(T \) number of observations to estimate (A1).

With autocorrelation of order \(g \) in \(U_0 \),

\[
U_0 = \sum_{j=1}^{g} U_{-j} C_j + E,
\]

where \(E \) has typical rows \(e_t' \), and \(e_t \) and \(e_l \) are uncorrelated for \(l \neq t \). A model dependent autocorrelation test is based on the null hypothesis that \(C_i = \ldots = C_g = 0 \) in an auxiliary system that includes the lagged least squares residuals from (A1), namely

\[
Y_0 = ZB + E \tag{A2}
\]
where \(T \cdot [n+g+p+n] \cdot Z = \begin{bmatrix} Y_{-1}, ..., Y_{-p}, X, \hat{U}_{-1}, ..., \hat{U}_{-g} \end{bmatrix}, \quad B_{n+[p+g]+m} = \begin{bmatrix} A_{1}, ..., A_{p}, \Pi, C_{1}, ..., C_{g} \end{bmatrix} \)

The least squares estimator of (A2) is \(\hat{\beta} = (Z'Z)^{-1}Z'Y \) as in the familiar univariate case and if we let \(\hat{\beta} = \text{vec}(\hat{\beta}) \) then it can be shown,

\[
\sqrt{T} (\hat{\beta} - \beta) \xrightarrow{d} N(0, V^{-1}WV^{-1}),
\]

with \(V = I_n \otimes \Gamma \) and \(\Gamma = \rho \lim Z'Z / T \) under suitable regularity conditions, see Hafner & Herwartz (2002). Under conditional homoskedasticity \(W = \Sigma_e \otimes \Gamma \), where \(\Sigma_e = E(e,e') \). The null hypothesis of no autocorrelation can be expressed as

\(H_0: R\beta = 0 \) against \(R\beta \neq 0 \),

where \(R \) is a \(n^2 \cdot p \times n^2 \cdot (p+g) \) nonstochastic selection matrix of zeros except a unity in each row that picks up the parameters of the lagged residuals in \(\beta \) one by one.

Under the heteroskedasticity \(\Sigma_e \) is no longer constant, but multivariate extension of White’s (1980) heteroskedasticity consistent covariance matrix estimator can be used. It is consistently estimated as

\[
\hat{W} = \frac{1}{T} \sum_{t=1}^{T} \hat{e}_t' \hat{e}_t \otimes z_t' z_t',
\]

where \(z_t \) is \(t^{th} \) row of \(Z \). In our application we replace \(\hat{e}_t \) by \(\hat{u}_t \), which is found to improve the finite sample inference in the univariate framework as discussed in Davidson and MacKinnon (1985) and Godfrey and Orme (2004). From (A3) and (A4), the multivariate GT test has the asymptotic distribution

\[
GT = T(R\hat{\beta})' \left[R(V^{-1}WV^{-1})R' \right]^{-1} (R\hat{\beta}) \xrightarrow{d} \chi^2(n^2k).
\]
References

Table 1. Selected VAR lag orders

<table>
<thead>
<tr>
<th></th>
<th>Panel A</th>
<th>Panel B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan 52- Dec 03</td>
<td>Jan 52- Dec 78</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2, 2</td>
<td>13, 8</td>
</tr>
<tr>
<td>6</td>
<td>2, 1</td>
<td>9, 3</td>
</tr>
<tr>
<td>9</td>
<td>2, 1</td>
<td>9, 2</td>
</tr>
<tr>
<td>12</td>
<td>2, 1, 1, 1</td>
<td>9, 2, 1, 3</td>
</tr>
<tr>
<td>24</td>
<td>2, 2, 1, 1, 2</td>
<td>2, 2, 2, 1, 1, 2</td>
</tr>
<tr>
<td>36</td>
<td>2, 2, 1, 1, 1</td>
<td>2, 2, 1, 1, 1</td>
</tr>
<tr>
<td>48</td>
<td>2, 2, 1, 1, 1, 1</td>
<td>2, 2, 1, 1, 1, 1</td>
</tr>
<tr>
<td>60</td>
<td>2, 2, 1, 1, 1</td>
<td>2, 2, 1, 1, 1</td>
</tr>
<tr>
<td>120</td>
<td>2, 1, 1, 1, 1, 1</td>
<td>2, 1, 1, 1, 1, 1</td>
</tr>
</tbody>
</table>

Note: Panel A reports the VAR lag orders chosen by SIC for various maturity pairs. Maturities of longer rates are in the first column and those of the shorter rates are in the first rows of the sub-tables corresponding to three samples. The maximum lag length considered is $p_{max} = \left\lfloor \frac{T}{100} \right\rfloor$. Panel B provides lag lengths that result from application of the autocorrelation test after SIC, with the highlighting indicating cases where these differ from the SIC results.
Table 2. Multivariate autocorrelation test

<table>
<thead>
<tr>
<th></th>
<th>Jan 52- Dec 03</th>
<th></th>
<th>Jan 52- Dec 78</th>
<th></th>
<th>Jan 52- Dec 93</th>
<th></th>
<th>Jan 52- Dec 97</th>
<th></th>
<th>Jan 52- Dec 00</th>
<th></th>
<th>Jan 52- Dec 02</th>
<th></th>
<th>Jan 52- Dec 03</th>
<th></th>
<th>Jan 52- Dec 04</th>
<th></th>
<th>Jan 52- Dec 05</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4.36</td>
<td></td>
<td>1.74</td>
<td></td>
<td>1</td>
<td></td>
<td>0.55</td>
<td></td>
<td>0.55</td>
<td></td>
<td>0.55</td>
<td></td>
<td>0.55</td>
<td></td>
<td>0.55</td>
<td></td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.36</td>
<td>0.02</td>
<td>0.77</td>
<td></td>
<td>0.44</td>
<td>0.02</td>
<td>0.86</td>
<td></td>
<td>0.52</td>
<td>0.07</td>
<td>0.84</td>
<td></td>
<td>0.51</td>
<td></td>
<td>0.90</td>
<td></td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>3.24</td>
<td>8.83</td>
<td>1.44</td>
<td></td>
<td></td>
<td>3.29</td>
<td>7.03</td>
<td>12.68</td>
<td></td>
<td>3.29</td>
<td>7.03</td>
<td>12.68</td>
<td></td>
<td>3.29</td>
<td>7.03</td>
<td>12.68</td>
<td></td>
<td>3.29</td>
<td>7.03</td>
</tr>
<tr>
<td></td>
<td>0.52</td>
<td>0.06</td>
<td>0.90</td>
<td></td>
<td>0.51</td>
<td>0.13</td>
<td>0.89</td>
<td></td>
<td>0.53</td>
<td>0.11</td>
<td>0.86</td>
<td></td>
<td>0.53</td>
<td>0.11</td>
<td>0.86</td>
<td></td>
<td>0.53</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>2.80</td>
<td>1.30</td>
<td>10.1</td>
<td></td>
<td>0.59</td>
<td>0.86</td>
<td>0.91</td>
<td></td>
<td>0.59</td>
<td>0.90</td>
<td>0.97</td>
<td></td>
<td>0.59</td>
<td>0.90</td>
<td>0.97</td>
<td></td>
<td>0.59</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>0.51</td>
<td>0.47</td>
<td>0.97</td>
<td></td>
<td>0.53</td>
<td>0.31</td>
<td>0.97</td>
<td></td>
<td>0.53</td>
<td>0.31</td>
<td>0.97</td>
<td></td>
<td>0.53</td>
<td>0.31</td>
<td>0.97</td>
<td></td>
<td>0.53</td>
<td>0.31</td>
</tr>
<tr>
<td>3</td>
<td>2.92</td>
<td>5.16</td>
<td></td>
<td></td>
<td>6</td>
<td>5.36</td>
<td>9.79</td>
<td></td>
<td>6</td>
<td>5.36</td>
<td>9.79</td>
<td></td>
<td>6</td>
<td>5.36</td>
<td>9.79</td>
<td></td>
<td>6</td>
<td>5.36</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
<td>0.27</td>
<td>0.66</td>
<td></td>
<td>0.57</td>
<td>0.28</td>
<td>0.79</td>
<td></td>
<td>0.57</td>
<td>0.28</td>
<td>0.79</td>
<td></td>
<td>0.57</td>
<td>0.28</td>
<td>0.79</td>
<td></td>
<td>0.57</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
<td>9.61</td>
<td></td>
<td>4.61</td>
<td></td>
<td>2.40</td>
<td></td>
<td>3.29</td>
<td></td>
<td>7.03</td>
<td></td>
<td>3.29</td>
<td></td>
<td>7.03</td>
<td></td>
<td>3.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.66</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
<td>4.97</td>
<td></td>
<td>3.29</td>
<td></td>
<td>7.03</td>
<td></td>
<td>3.29</td>
<td></td>
<td>7.03</td>
<td></td>
<td>3.29</td>
<td></td>
<td>7.03</td>
<td></td>
<td>3.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td></td>
<td>5.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td></td>
<td>6.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
<td>6.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td></td>
<td>6.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
<td>0.79</td>
<td></td>
<td>0.51</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Note: Table provides first order autocorrelation test results for the VAR residuals. The first number, given in **bold** is the test statistic followed by the corresponding asymptotic and wild bootstrapped p values (respectively) that there is no autocorrelation. The VAR lag length is given in Panel A of Table 1 and the test is described in the Appendix A. The cases where the first order serial correlation is detected are highlighted.
Table 3. Number of iterations required in stationarity correction

Jan 52- Dec 03

<table>
<thead>
<tr>
<th></th>
<th>Jan 52- Dec 03</th>
<th>Jan 52- Dec 78</th>
<th>Jan 82- Dec 03</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 6 9 12 24 60</td>
<td>1 2 3 4 6 9 12 24 60</td>
<td>1 2 3 4 6 9 12 24 60</td>
</tr>
<tr>
<td>Panel A. Unrestricted Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N.C.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>N.C.</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>58</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>40</td>
<td>33</td>
<td>27</td>
</tr>
<tr>
<td>36</td>
<td>46</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>50</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>52</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>57</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Panel B. Restricted Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.88</td>
<td>1.66</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N.C.</td>
<td>5.97</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>N.C.</td>
<td>22.79</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>69.78</td>
<td>1.21</td>
<td>1.39</td>
</tr>
<tr>
<td>9</td>
<td>32.25</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>16.44</td>
<td>1.53</td>
<td>1.61</td>
</tr>
<tr>
<td>24</td>
<td>34.58</td>
<td>24.50</td>
<td>15.64</td>
</tr>
<tr>
<td>36</td>
<td>42.46</td>
<td>31.45</td>
<td>2.37</td>
</tr>
<tr>
<td>48</td>
<td>46.74</td>
<td>37.85</td>
<td>2.59</td>
</tr>
<tr>
<td>60</td>
<td>48.12</td>
<td>40.82</td>
<td>2.68</td>
</tr>
<tr>
<td>120</td>
<td>52.38</td>
<td>2.57</td>
<td>2.53</td>
</tr>
</tbody>
</table>

Note: Panel A reports the number of iterations required to make the bias corrected VAR parameters stable for the unrestricted model. Panel B reports the average number of iterations required in the bootstrap simulations that generate empirical *p values*. Details of the procedure are given in Section III.B. N.C. means non-convergence of the iterative procedure.
Figure 1. Effect of lag uncertainty on empirical distributions of LM statistic

Note: The left-hand panel shows the empirical bootstrap distributions of the LM test statistic for different treatments of the lag uncertainty for the period of January 1952- December 1978, together with the asymptotic distribution $\chi^2(6)$. The distributions of the lag lengths are provided in the right-hand panel. The estimated LM statistic for this maturity pair is 13.29 and corresponding 95% quantiles of the 4 distributions graphed are 12.14, 11.56, 15.08 and 12.59.
Table 4. LM test of the EH of term structure

<table>
<thead>
<tr>
<th></th>
<th>Jan 52- Dec 03</th>
<th></th>
<th>Jan 52- Dec 78</th>
<th></th>
<th>Jan 82- Dec 03</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 6 9 12</td>
<td>24 60</td>
<td>1 2 3 4 6 9 12</td>
<td>24 60</td>
<td>1 2 3 4 6 9 12</td>
<td>24 60</td>
</tr>
<tr>
<td>2</td>
<td>28.28</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>27.14*</td>
<td>35.56</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>23.47</td>
<td>32.18</td>
<td>45.64</td>
<td>21.16</td>
<td>23.42*</td>
<td>17.24</td>
</tr>
<tr>
<td>6</td>
<td>22.37</td>
<td>16.03</td>
<td>18.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>22.12</td>
<td>15.66</td>
<td>25.30*</td>
<td>8.09</td>
<td>11.11</td>
<td>6.17</td>
</tr>
<tr>
<td>12</td>
<td>17.12</td>
<td>9.95</td>
<td>32.62</td>
<td>16.17</td>
<td>12.39</td>
<td>5.88</td>
</tr>
<tr>
<td>24</td>
<td>16.98</td>
<td>16.00</td>
<td>6.30</td>
<td>3.21</td>
<td>13.03</td>
<td>16.92</td>
</tr>
<tr>
<td>36</td>
<td>13.45</td>
<td>12.34</td>
<td>5.64</td>
<td>5.46</td>
<td>10.32</td>
<td>13.69</td>
</tr>
<tr>
<td>48</td>
<td>11.39</td>
<td>10.28</td>
<td>5.41</td>
<td>3.35</td>
<td>5.67</td>
<td>5.81</td>
</tr>
<tr>
<td>60</td>
<td>10.54</td>
<td>9.45</td>
<td>5.67</td>
<td>3.69</td>
<td>5.98</td>
<td>13.97</td>
</tr>
<tr>
<td>120</td>
<td>9.88</td>
<td>7.53</td>
<td>6.90</td>
<td>4.95</td>
<td>5.81</td>
<td>5.66</td>
</tr>
</tbody>
</table>

Note: First number in each set is the LM test statistic and second and third numbers are asymptotic and finite sample p-values, respectively. The cells highlighted indicate the rejection of the EH at the 5% significance level according to the empirical finite sample distribution. N.S. indicates the restricted VAR is unstable.

* indicates cases where the maximum VAR lag length is restricted to be 5 as the iterative procedure did not converge.