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Abstract

We consider an alternating offer model where the size of the to-

tal surplus is stochastic. Furthermore, the size changes during the

time when the offer is being considered. As a result the responder

may obtain more information than the proposer. We analyze how the

asymmetry in ability to access good information affects the bargaining

power, both in terms of the resulting share and in terms of the delay

in agreement.
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1 Introduction

Since Nash (1950) published his seminal paper there have been a lot of rigor-

ous studies about bargaining, both axiomatic and strategic. One important

research in strategic approach is the alternating offer bargaining game of

Rubinstein (1982). He showed how time preference affects the bargaining

power, using an infinite horizon model where players alternate in making of-

fers and couter-offers until an agreement is reached. We consider a situation

where the total size of the surplus fluctuates as in Merlo and Wilson (1995,

1998). They considered a quite general n-person bargaining model where

the total size of the surplus as well as the order of offers and responses are

stochastically determined and the process need not necessarily be symmetric.

However, the players know at the beginning of each period what the size of

the “cake” is and who moves when in that period. One of the main implica-

tions in the transferable utility case (Merlo and Wilson (1998)) is that the set

of the agreement states of the unique stationary subgame perfect outcome

depends only on the “cake process”. Furthermore, the outcome is efficient in

the sense that delay occurs when and only when the players expect a bigger

cake later on.

Avery and Zemsky (1994) considered a bargaining model where the size of

the surplus changes after an offer is made and before a response is determined.

For example, while on a strike the firm may gain or lose the market share,

the price of the product the firm sells may change. There will always be some

changes in economic environment which may affect the size of the cake while

the offer is being considered. Offers contingent on the realization of the size

of the surplus is ruled out, which is justified when the actual surplus is not
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verifiable to a third party. Avery and Zemsky (1994) assumed multiplicative

i.i.d. shocks. Hence the cake which is of size xn when an offer w is made can

grow to xna > xn (with probability p) or shrink to xnb < xn (with probability

1 − p) by the time when a response is made. If the offer is accepted the

proposer receives xns−w, s = a or b, and the respondent gets w. If the offer

is rejected then the players switch roles and start the same procedure with

the new cake of size xn+1 = xns. The common discount factor is δ. They

showed that there is a unique stationary subgame perfect equilibrium in

which the proposer uses the same strategy regardless of his/her identity and

the same for the respondent. They completely characterized the equilibrium

strategy. For each (a, p) the strategy is one of three types. If players are

sufficiently patient (regime D), the proposer tries to screen by offering w

which corresponds to the reservation value of the low type (s = b). This offer

will be accepted only by the low type and hence inefficient delay can occur,

asymmetry of information being the source. If the players are sufficiently

impatient (regime A), the proposer gives up and offers w which corresponds

to the reservation of the high type (s = a). This will be accepted by both

types, hence no delay. Between these regimes there is an intermeidiate case

where the proposer uses a mixed strategy between high and low offers. They

also showed that in regime A (low discount factor) this (pooling equilibrium)

is the only subgame perfect equilibrium if the uncertainty is small (i.e., if

δa < 1).

Our model is quite similar to that of Avery and Zemsky (1994). The main

difference is that we introduce asymmetry between the two players which

represents different abilities to obtain information. We focus on how this
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asymmetry in the access to good information affects the bargaining power.

We also extend their model substantially by considering continuous distri-

butions for the (multiplicative) shocks. We obtain the general uniqueness

(not just for small δ) as long as the uncertainty is samll. Avery and Zemsky

(1994) deals with the case where the proposer is a “buyer”; i.e., the respon-

dent receives a fixed amount offered by the proposer and the proposer gets

the residual. We consider both the “seller” case and the “buyer” case.

In the next section we introduce our model where offers are made in terms

of the proposer’s share. We introduce some basic and preliminary results,

and then characterize the subgame perfect equilibrium. In the last section

we introduce an alternative model where offers are made in terms of the

respondent’s share. We also characterize the equilibrium in terms of the

resulting share and the delay possibilities.

2 Model I: Selling Game

Two players can generate a surplus and bargain over each player’s share of

the surplus. The size of the surplus is determined stochastically. It follows

a stochastic process characterized by a multiplicative shock; xn+1 = xntn,

where tn’s are i.i.d. random variables with density f(·), and distribution fun-

tion F (·). In period n both players observe xn, and in period n = 0, 2, 4, · · ·

player 1 proposes xna for her share. (We will consider an alternative model

where each proposer offers the opponent’s share.) When player 2 responds,

he knows xn+1. If he accepts 1’s offer the game ends and the players divide
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xn+1. If player 2 rejects 1’s offer, he proposes xn+1b for 1’s share.1 Hence,

offers are made in terms of player 1’s share. Player 1 must respond without

observing xn+2.. Hence there is informational asymmetry. If 1 accepts 2’s

proposal, then the game ends and they divide xn+1. If 1 rejects 2’ offer,

then she observes xn+2 = xn+1tn+1, and proposes xn+2a
′, and so on.2 f(·) is

assumed to have support [τ0, τ1]. We assume that the support is sufficiently

small, especially that τ1 − τ0 ≤ 1 − δ. One implication of this assumption

is that δτ1 ≤ 1, which corresponds to the small uncertainty case of Avery

and Zemsky (1994). The stochastic process {xn} is already assumed to be

“stationary”. We also assume that the stochastic process {xn} is martingale,

i.e., E(xn+m | xn) = xn or E(tn) = 1. We assume that f is continuous and

weakly single-peaked with the maximum peak not too small. More precisely,

there is τ̂ ∈ [τ0, τ1] such that f(t) is weakly increasing on [−τ0, τ̂ ] and weakly

decreasing on [τ̂ , τ1] with τ1 − τ̂ ≤ (τ1 − τ0)τ̂ . The last inequality holds if

the peak is not too smaller than the mean 1. Uniform distributions as well

as any symmetric single peaked distributions satisfy these assumptions. The

common discount factor is δ.

1Since there is no uncertainty to be resolved between them, this is equivalent to an

offer in terms of 2’s share.
2We could have introduced a shock which occurs after a player rejected an offer and

before that player makes a counter offer. This would not change our results, only making

the exposition more complicated.
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3 Preliminary Results

One can check that the following “stationary” strategies constitute a subgame

perfect equilibrium. (i) Player 1 offers xna
∗; (ii) player 2 accepts xna if and

only if xna ≤ xn+1c
∗; (iii) player 2 offers xn+1b

∗; and (iv) player 1 accepts

xn+1b if and only if xn+1b ≥ xn+1b
∗, where c∗ ≡ (1 − δ) + δb∗, and a∗ and b∗

are described in the following proposition.

Proposition 1. The strategy profile described by (i)-(iv) constitutes a sub-

game perfect equilibrium, if a∗ and b∗ are the solutions to the following

equations

a∗ = arg max
a

a
(
1 − F (

a

c∗
)
)

+ δb∗
∫ a/c∗

τ0

tdF (t), (1)

Proof.

b∗ = δ

[
a∗

(
1 − F (

a∗

c∗
)

)
+ δb∗

∫ a∗/c∗

τ0

tdF (t)

]
. (2)

Given 2’s strategy, the best 1 can do is to offer xna that maximizes

xnu1(a, b∗) ≡
∫ τ1

a/c∗
xnadF (t) + δ

∫ a/c∗

τ0

xntb
∗dF (t)

= xn

[
a

(
1 − F (

a

c∗
)
)

+ δb∗
∫ a/c∗

τ0

tdF (t)

]
.

Hence,1’s strategy is a best response to 2’s strategy in any subgame. In a

subgame beginning in period n + 1 with 2 making an offer, the best 2 can

do is to offer xn+1b
∗. Thus in any subgame beginning with 1 making an offer

the best 2 can do is to accept any offer xna that satisfies

xn+1 − xna ≤ δxn+1(1 − b∗),

which leads to the strategy accepting any offer with xna ≤ xn+1c
∗. ¥
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Next, we want to show that the equilibrium described above is the only

subgame perfect equilibrium. In a stationary equilibrium, 1’s payoff is

xnu1(a
∗, b∗) = xn

[
a∗

(
1 − F (

a∗

c∗
)

)
+ δb∗

∫ a∗/c∗

τ0

tdF (t)

]
.

Choosing a in order to maximize u1(a, c∗) is equivalent to choosing t in order

to maximize

û1(t, b
∗) = c∗t[1 − F (t)] + δb∗

∫ t

τ0

rdF (r).

By definition c∗ satisfies the following

c∗ = (1 − δ) + δb∗.

Hence, we have

û1(t, b
∗) = (1 − δ + δb∗)[1 − F (t)]t + δb∗

∫ t

τ0

rdF (r)

= (1 − δ + δb∗)[1 − F (t)]t + δb∗
(

tF (t) −
∫ t

τ0

F (r)dr

)
= (1 − δ) (1 − F (t)) t + δb∗t − δb∗

∫ t

τ0

F (r)dr.

Lemma 1. Given b∗, the following problem has a unique solution t∗.

max
t

(1 − δ) (1 − F (t)) t + δb∗t − δb∗
∫ t

τ0

F (r)dr s.t. t ∈ [τ0, τ1]

Proof. Define h(t) = (1 − δ) (1 − F (t)) t + δb∗t − δb∗
∫ t

τ0
F (r)dr. Then,

h′(t) = (1 − δ) (1 − F (t) − tf(t)) + δb∗ − δb∗F (t)

= (1 − δ + δb∗) (1 − F (t)) − (1 − δ)tf(t).
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For t ∈ [τ0, τ̂ ], h′(t) is decreasing since F (t) and tf(t) are strictly increasing.

h′(0) > 0. Furthermore h′(t) < 0 for t ∈ [τ̂ , τ1) since

(1 − δ + δb∗) (1 − F (t)) < 1 − F (t)

≤ (τ1 − t)f(t)

≤ (τ1 − τ̂)f(t)

≤ (τ1 − τ0)τ̂ f(t) by the assumption about τ̂

≤ (1 − δ)tf(t).

Hence, there exists a unique maximizer t∗ ∈ (τ0, τ̂) ¥

Hence, we can write as a∗ = c∗t∗. This lemma guarantees that, given b∗,

a∗ and u1(a
∗, b∗) are well-defined functions of b∗. Define g(b∗) ≡ δu1(a

∗, b∗)

for b∗ ∈ [0, 1]. Then (a∗, b∗) is a solution to equations (1) and (2) if and only

if b∗ is a fixed point of g(·) and a∗ = c∗t∗. The next lemma shows that g has

a unique fixed point.

Lemma 2. g has a unique fixed point.

Proof. When b∗ = 0, player 1 can guarantee a payoff of τ0(1− δ) by choosing

a = τ0(1 − δ). Hence g(0) > 0. When b∗ = 1, we have c∗ = 1 and a∗ = t∗.

Then u1(t
∗, 1) ≤

∫ τ1
τ0

min{t, t∗}dF (t) ≤
∫ τ1

τ0
tdF (t) = 1. Hence, g(1) ≤ δ < 1.

Furthermore, by the envelope theorem

g′(b∗) =
d

db∗
û1(t

∗, b∗)

= δt∗ [1 − F (t∗)] + δ

∫ t∗

τ0

tdF (t)

= δ

∫ τ1

τ0

min{t, t∗}dF (t) < 1.

Therefore, g(·) must have a unique fixed point. ¥
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4 Equilibrium

We now prove the uniqueness of the subgame perfect equilibrium.

Theorem 1. Under our assumptions, there exists a unique subgame perfect

equilibrium3, which consists of a strategy porfile described by (i)-(iv), with

a∗ = (1 − δ + δb∗)t∗,

b∗ = δ

[
a∗ (1 − F (t∗)) + δb∗

∫ t∗

τ0

tdF (t)

]
.

Proof. Let us denote the game beginning in period n with player 1 making

an offer by Game n and the subgame beginning in period n + 1 with player

2 making an offer by Game n + 1. Define

un = sup{u | xnu is 1’s subgame perfect equilibrium payoff in Game n},

un = inf{u | xnu is 1’s subgame perfect equilibrium payoff in Game n},

vn+1 = sup{v | xn+1v is 2’s subgame perfect equilibrium payoff in Game n + 1},

vn+1 = inf{v | xn+1v is 2’s subgame perfect equilibrium payoff in Game n + 1}.

Since Games n and n′ (Games n + 1 and n′ + 1) are identical except for the

size of the initial surplus, we must have un = un′ ≡ u and un = un′ ≡ u

( vn+1 = vn′+1 ≡ v and vn+1 = vn′+1 ≡ v) for any two even numbers n and

3To be precise, there are other equilibria including player 2 rejecting 1’s offer of xna∗

with positive probability. Since the probability of this event is zero and neither player’s

payoff is affected, we ignore this.
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n′.4 Then, we have

xn+1v = xn+1 − δEn+1(xn+2u) = xn+1(1 − δu), or

v = 1 − δu. (3)

Similarly we have

xn+1v = xn+1 − δEn+1(xn+2u) = xn+1(1 − δu), or

v = 1 − δu. (4)

According to Lemma 1, we have

u = [1 − δ + δ(1 − v)][1 − F (t∗)]t∗ + δ(1 − v)

∫ t∗

τ0

tdF (t) (5)

u = [1 − δ + δ(1 − v)][1 − F (t∗)]t∗ + δ(1 − v)

∫ t∗

τ0

tdF (t), (6)

where t∗ and t∗ are the maximizers corresponding to 1− v and 1− v, respec-

tively. Substituting δu and δu for 1 − v and 1 − v, we obtain

u = [1 − δ + δ2u][1 − F (t∗)]t∗ + δ2u

∫ t∗

τ0

tdF (t), and

u = [1 − δ + δ2u][1 − F (t∗)]t∗ + δ2u

∫ t∗

τ0

tdF (t).

Unless u = u, we have two fixed points of g(·), namely δu and δu, which

contradicts Lemma 1. Hence we must have u = u. Since player 1 can secure

a payoff of δu in Game n+1, the sum of the payoffs of the players in Game n+1

is equal to xn+1, which means that the game ends without delay. Hence, the

unique subgame perfect equilibrium in Game n+1 includes player 2 offering

4For any equilibrium of Game n or n+1, we obtain an equilibrium of Game n′ or n′+1

by multiplying a suitable numer for each strategy.
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xn+1δu and player 1 accepting the offer. Given this, the only equilibrium

response of player 2 in Game n is to accept xna < xn+1(1 − δ + δ2u) and

reject xna > xn+1(1 − δ + δ2u) = xn+1(1 − δ + δb∗). Then, xna
∗ is the only

equilibrium offer player 1 makes in Game n. ¥

If we write u = u = u∗ and v = v = v∗, then the equations (3) - (6) can

be rewritten as

u∗ = (1 − δ)[1 − F (t∗)]t∗ + δ(1 − v∗)

(
[1 − F (t∗)]t∗ +

∫ t∗

τ0

tdF (t)

)
, (7)

v∗ = 1 − δ + δ(1 − u∗). (8)

Equation (8) represents the normal relationship between the two players’

payoffs in Rubinstein (1982) model. The proposer (player 2) extracts all the

surplus from early agreement (1 − δ), which is added to the disagreement

payoff δ(1 − u∗) to yield his equilibrium payoff. Comparing this with equa-

tion (7), we can see how the informational disadvantage weakens player 1’s

bargaining position. If there is no disadvantage, we would have 1 instead of

[1 − F (t∗)]t∗ or [1 − F (t∗)]t∗ +
∫ t∗

τ0
tdF (t). Notice that

[1 − F (t∗)]t∗ < [1 − F (t∗)]t∗ +

∫ t∗

τ0

tdF (t) =

∫ t∗

τ0

min{t, t∗}dF (t) < 1.

1 − F (t∗) is the probability that an agreement is reached and t∗ is the min-

imum (normalized) size of the surplus to be harvested this period. If the

potential surplus is small (t < t∗) then agreement is delayed and 1’s share is

proportional to the realized value t. However, when the potential surplus is

large (t ≥ t∗) 1 receives less than proportional share of the realized value.
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5 Model II: Buying Game

In this section we consider a game which is identical to the selling game

except that the offer is specified in terms of player 2’s share. The analysis

is the same as in selling game except that the uniqueness of s∗ (an analogue

of t∗ in Model I) is guaranteed only for large enough δ. Consequently, the

uniqueness of the equilibrium is guaranteed only for large enough δ. For such

δ, the equilibrium is characterized as follows.

(i’) 1 offers xnα
∗ for 2’s share;

(ii’) 2 accepts 1’s offer xnα if and only if xnα ≥ xn+1δβ
∗;

(iii’) 2 offers xn+1β
∗ for 2’s share;

(iv’) 1 accepts 2’s offer xn+1β if and only if xn+1β ≤ xn+1β
∗.

α∗ and β∗ satisfies the following equations;

α∗ = arg max
α

∫ α/δβ∗

τ0

(s − α)dF (s) + δ

∫ τ1

α/δβ∗
s(1 − β∗)dF (s)

β∗ = 1 −

[∫ α∗/δβ∗

τ0

(s − α)dF (s) + δ

∫ τ1

α∗/δβ∗
s(1 − β∗)dF (s)

]

The equilibrium payoffs are characterized by the following relations;

u∗ = (1 − δ)

∫ s∗

τ0

sdF (s) + δ

[
1 − v∗

{
1 +

∫ s∗

τ0

(s∗ − s)dF (s)

}]
v∗ = (1 − δ) + δ(1 − u∗).

Since
∫ s∗

τ0
sdF (s) < 1 and

∫ s∗

τ0
(s∗−s)dF (s) > 0, player 1 is at a disadvantage.

In this game delay occurs when the cake is large and so the respondent

expects a larger payoff next period, a property which is carried over from

Avery and Zemsky (1994).
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6 Further Research

In a simple framework we showed how informational disadvantage affects the

bargaining power by analyzing the unique subgame perfect equilibrium. It

would be nice if we can generalize the information structure so that each

player obtains some but not perfect information about future periods. It is

yet unknown whether the uniqueness result will be extended to the general

case. Another line of extension would be to allow the proposer to choose

the type of offer, buying or selling. One might also alow the possibility of

proposing a menu that contains both selling and buying prices as in Ben-Ner

and Jun (1996).
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