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Abstract 

Existing approaches to the meta-frontier estimation are largely based on the linear 

programming technique, which does not hinge on any statistical underpinnings. We suggest 

estimating meta-frontiers by constrained maximum likelihood subject to the constraints that 

specify the way in which the estimated meta-frontier overarches the individual group 

frontiers. We present a methodology that allows one to either estimate meta-frontiers using 

the conventional set of constraints that guarantees overarching at the observed combinations 

of production inputs, or to specify a range of inputs within which such overarching will hold. 

In either case the estimated meta-frontier coefficients allow for the statistical inference that is 

not straightforward in case of the linear programming estimation. We apply our methodology 

to the world’s FAO agricultural data and find similar estimates of the meta-frontier 

parameters in case of the same set of constraints. On the contrary, the parameter estimates 

differ a lot between different sets of constraints.  
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1.  Introduction 

 

This paper is suggesting a methodology for estimating meta-frontiers within a framework 

of constrained maximum likelihood. Such estimation is a useful means of decomposing the 

level of productive inefficiency of a firm into two components: the one explained by the 

inefficient management practices, and the other one explained by the characteristics of the 

production environment in which firms operate. While the former type of productive 

inefficiency can be captured in the framework of technical efficiency estimation as in Aigner 

& al. (1977), the latter inefficiency type requires an estimation of the overarching envelope of 

a group of stochastic frontiers. The key assumption in this framework is that different groups 

of firms operate under statistically different stochastic frontiers that in turn are lying below 

the common envelope called meta-frontier. 

 

The concept of meta-frontier has its roots in the concept of a meta-production function that 

is dating back to an early paper by Hayami & Ruttan (1971), where it is regarded as an 

envelope of the neoclassical production functions estimated for the individual groups of 

observations. Based on the concept of a stochastic frontier outlined in Aigner et al. (1977), 

O’Donnell & al. (2008) define group frontiers to be the boundaries of restricted technology 

sets where restrictions derive from the lack of economic infrastructure, institutions and 

general development of the economic environment. In contrast, the meta-frontier is defined 

as a boundary of the unrestricted technology set that the perfectly efficient firms in their 

respective groups would have attained, should the economic environment in which they 

operate have been the global best-practice one. Within the meta-frontier framework the 

comparison of firms’ technical efficiency levels is making more sense since a clear distinction 

is being made between the inability to adopt the best operating practice in one’s group of 
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firms (technical efficiency) and the lack of favorable operating environment of one’s group of 

firms relative to the best environment available in the world (technological gap). We provide 

an overview of the meta-frontier framework in Section 2. 

 

Fried & al. (2008) underscores the importance of making a distinction between differences 

in the private management practices, and differences in the operating environment. 

Estimating technical efficiency levels against a pooled sample technological frontier will 

attribute all inefficiency to the shortcomings of managerial practices, while in fact the 

inefficiency can be caused by a deficient technological environment. Thus, failing to 

recognize the fact that different groups of firms may be facing different operating 

environments will in general result in one’s inability to correctly compare the estimated 

efficiency levels (e.g. by means of FRONTIER by Coelli (1992)) among firms belonging to 

two different groups. An interesting empirical study by Zeitsch & al. (1994) likens the 

comparison of technical efficiency levels for firms operating under different technological 

frontiers to the (in)famous comparison between apples and oranges. Another reason why 

proper attribution of differences in economic performance to managerial practices or 

operating environment is important is that such attribution allows one to design incentive-

based economic policies depending on the relative importance of either type of the productive 

inefficiency. O’Donnell & al. (2008) present a general analytical framework in which meta-

frontiers are defined and estimated using both parametric and non-parametric methods. 

 

Battese & Rao (2002) offered an operational methodology for estimating a meta-frontier in 

the stochastic frontier framework based on the estimates of the individual stochastic group 

frontiers. However, their methodology provided no guarantee that the estimated meta-frontier 

will stay above the estimated group frontiers. Battese & al. (2004) have presented a practical 
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way to solve this problem by suggesting a non-parametric method of meta-frontier estimation. 

The framework they offer is a two-step approach. In the first step, one identifies the groups of 

firms (or other decision-making units) in the sample in order to estimate technical efficiency 

scores relative to these group frontiers. In the second step, based on the estimated parameters 

of the deterministic group frontiers, one looks for an envelope frontier that approaches the 

estimated group frontiers most closely without falling below any one of them at the observed 

combinations of input factors. The estimation procedure in the second step is based on the 

minimization of either the sum of the distances between a meta-frontier and the group 

frontiers, or the sum of those distances’ squares. In the latter case the estimation can be done 

by constrained OLS. Statistical inference about the estimated meta-frontier parameters in the 

non-parametric cases is usually made on the basis of bootstrapping or simulation. We will 

further refer to the linear-programming based methodologies of meta-frontier estimations as 

LP methodologies. 

 

In this study we attempt to extend the stochastic frontier framework for meta-frontier 

estimation in two ways. First, we suggest estimating meta-frontiers by constrained maximum 

likelihood (called CML from now on). Being a parametric one, the CML approach allows for 

a statistical inference on the estimated meta-frontier parameters. Such inference cannot be 

produced naturally in case of LP estimation, since the latter does not hinge on any statistical 

assumptions. The proposed CML methodology is essentially solving the same problem of 

minimizing the distance between the meta-frontier and the estimated group frontiers as the 

one handled by the LP methodology, at the same time providing for a possibility of statistical 

inference making. 

 

Second, we extend the set of constraints that can be imposed on the estimated meta-frontier 
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so that it may overarch group frontiers either at the observed input combinations, or within an 

arbitrary range of those inputs, or both. Although the LP methodology results in a meta-

frontier that never falls below any one of the group frontiers at any of the observed 

combinations of inputs, this meta-frontier may fall below one or several group frontiers at an 

input combination within a cuboid in the space of the production inputs. The overarching 

property may be violated e.g. in case of estimating the flexible functional forms such as 

translog that may not be monotonic in a connected set of input factors that includes the 

observed combinations of inputs (Henningsen and Henning, 2009). However, even the 

imposition of monotonicity requirement in a specific domain of input factors does not 

preclude the situation where one or several group frontiers overarch the estimated meta-

frontier for some unobserved combinations of inputs belonging to the observed range. In case 

one is interested in ensuring the overarching property of the meta-frontier within a specific 

range of production inputs, requiring the overarching to only occur at the observed input 

combinations is not sufficient.  

 

We thus believe it is a reasonable extension to the methodology of meta-frontier estimation 

to let the latter overarch group frontiers not only at the observed combinations of inputs, but 

also within a particular cuboid containing those inputs. For example, in case one wanted to 

extrapolate the meta-frontier estimation results for a projected production plant in an industry, 

it would be natural to require that the predicted (and unobserved) best-practice output for this 

hypothetical plant given by an output level on the corresponding group frontier may not 

exceed the global best practice given by the estimated meta-frontier. We show that, in order 

for a meta-frontier to overarch the group frontiers everywhere within a specific domain of 

inputs, it is sufficient to require that it may only overarch the group frontiers in every vertex 

of a cuboid containing this domain. 
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We apply the CML methodology to the Food and Agriculture Organization (faostat.fao.org) 

database on 101 countries in order to compare the meta-frontier estimation results with the 

ones obtained by conventional linear programming methodology. We find that in case the 

meta-frontier is required to overarch group frontiers at the observed combinations of inputs, 

the two methodologies yield almost identical results. However, it is not clear at this stage 

whether this is an empirical coincidence or a theoretical regularity. In case the meta-frontier 

were required to overarch group frontiers within a cuboid containing all of the observed input 

combinations, both LP and CML resulted in a significant outward shift of the meta-frontier, 

proportionately driving down the estimated meta-technology ratios and meta-efficiency levels. 

If a researcher thinks it is enough for her purposes that the meta-frontier may overarch group 

frontiers only at the observed input combinations, the CML estimation easily accommodates 

this requirement as well (i.e. the “conventional” set of constraints may be used with the CML 

estimation as well). 

 

This paper is organized as follows. In Section 2 we briefly present the meta-frontier 

estimation methodology. Section 3 presents an operational method of constrained maximum 

likelihood (CML) so that the resulting meta-frontier overarches the group frontiers either at 

the observed combinations of the production inputs, or within an arbitrary cuboid containing 

those combinations. Section 4 presents and discusses empirical specifications and results. 

Section 5 concludes.  

  



2.  The Meta-Frontier Production Function Framework 

 

As mentioned in the Introduction, the key assumption behind the meta-frontier framework 

is that the production units in different groups operate under (statistically) different stochastic 

production frontiers that in turn fall short of an envelope called stochastic meta-frontier. 

Battese et al. (2004) define their stochastic frontier model for  units in group as: kN Kk ..1=

( ) k
it

k
it uvkk

Mit
k
it

k
it

k
it exxxfy −= β;,...,, 21                 (2.1) 

where is the output of production unit ity Ni ..1=  belonging to group  at time period 

, assuming 

k

Tt ..1= M production factors in the stochastic production function in each group, 

being the  input of production unit  in group  at time period . is a 

vector of group ’s frontier parameters. The composite error term consists of the 

symmetric normally distributed term 

k
jitx thj −

k

i k t kβ

k
ituk

itv −

( )2,~ vk
k
itv σ0... Ndii  and the one-sided non-negative 

term associated with technical inefficiency of production unit , that is k
itu i ( )2, ukσ0~

)

k
itu N . 

  

  Stochastic frontier is then given by the value of output that would be obtained should there 

be no inefficiency in the production units’ behavior whatsoever, i.e. if . The 

benchmark level of output on the stochastic frontier would be then given by 

 , and the level of technical efficiency for the production unit  in 

group  in time period  can be written as follows: 

ktiuk
it ,,,0 ∀=

( k
itvkk

Mit
k
it

k
it exxxf β;,...,, 21

k

i

t

( )
( )

k
it

k
it

k
it

k
it

u
vkk

Mit
k
it

k
it

uvkk
Mit

k
it

k
itk

it e
exxxf

exxxfTE −
−

==
β
β
;,...,,

;,...,,

21

21
                (2.2) 

 

  

7 
 



 

 The stochastic frontiers in (2.1) for the separate groups Kk ..1=  can be estimated 

by several software packages, e.g. FRONTIER 4.1 (Coelli, 1992), STATA, or LIMDEP. It is 

then necessary to test whether the  groups are characterized by statistically different 

production technologies by applying a likelihood ratio test that compares the value of the log-

likelihood function estimated for the pooled sample to the sum of the values of the individual 

log-likelihooods from the estimation of all group stochastic frontiers (Moreira and Bravo-

Ureta, 2010). 

K

 

 The meta-frontier model as defined by Battese et al. (2004) is a deterministic 

parametric function of the observed production inputs such that its value at every observed 

combination of inputs is greater than or equal to the predicted values of the deterministic 

group frontiers for all observations. Using the asterisk to refer to the meta-frontier, the latter 

then will be defined as follows: 

 

( )
( ) (

⎪
⎩

⎪
⎨

⎧

∀
≥

=

tki
xxxfxxxf

xxxfy
kk

Mit
k
it

k
it

k
Mit

k
it

k
it

k
Mit

k
it

k
itit

,,
;,...,,;,...,,

;,...,,

21
*

21

*
21

*

ββ

β

)

)

                         (2.3)          

 

 In case the production function in (2.1) is log-linear, (2.3) becomes: 
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where refers to the row-vector of the logs of the observed production inputs for ( ′k
itxln
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  To estimate meta-frontiers in (2.4), Battese et al. (2004) offer either minimizing a sum of 

squared deviations of the distance between the meta-frontier and the value of the group 

stochastic frontiers at the observed input vectors, or minimizing the sum of the absolute 

values of such deviations. The authors report similar results for the two approaches. In the 

empirical part of this study we opt for the minimization of absolute deviations when 

estimating the meta-frontiers since the latter procedure is more easily implemented compared 

to its quadratic counterpart, and there has been little evidence so far why minimizing the sum 

of absolute or squared deviations might produce superior results. 

 

Assuming the log-linear form of the production function and denoting by  the 

vector of the estimated parameters of the k-th group frontier, it has become customary to 

solve the following linear programming problem to estimate the parameters of the latter: 
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In section 4 we are going to offer an alternative to (2.5) that is based on the 

maximization of a constrained likelihood function. 

 

After the parameter vector has been estimated from (2.5), the meta-technology 

ratio can be computed according to O’Donnell et al. (2008) as a ratio for each observation of 

the output on the corresponding group frontier to the output level on the meta-frontier:  

*β
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The technical efficiency of each production unit with respect to the meta-

frontier will then be equal to the product of the technical efficiency of a production unit with 

respect to its group frontier  and the meta-technology ratio : 

*
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The increasing values of the meta-technology ratio in this context would mean a 

decrease in the distance between the group frontier and the meta-frontier. 
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3.  Constraining the Maximum Likelihood 

 

In this section we are deriving the set of constraints under which the estimated meta-

frontier overarches the group frontiers within an arbitrarily specified cuboid containing the 

actually observed inputs. In the next subsection we derive a set of  constraints for  

terms in the log-linear specification of the production function that correspond to such a 

requirement and prove that applying constrained maximum likelihood estimation to the 

pooled sample will indeed result in a meta-frontier overarching the group frontiers within the 

observed range of inputs. We then discuss the operational method of meta-frontier estimation. 

S2 S

 

 

3.1  Deriving a set of constraints for the likelihood function maximization 

 

Let  and  be the empirically observed logarithms of the minimum and 

maximum levels of variables , respectively, that enter the log-linear 

specification of the production function. For example, variables  can be both the 

logarithms of e.g. capital and labor as well as their squares or interaction terms. This 

generalization is needed to accommodate flexible functional forms such as translog. Clearly, 

once the minimum and the maximum of the original input factors are established, the minima 

and maxima of the squared, as well as the interaction, terms are automatically established. In 

this way the ensuing discussion refers to any log-linear functional forms, not just the Cobb-

Douglas one. Without loss of generality, we will further refer to -s as “production factors” 

or “input factors”. 

ikmin
ikmax
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Let  be the logarithm of the output level on the meta-frontier and be the 

logarithm of the level of output on one of the group frontiers. The set of all vertices in the 

set of the observed input factors   is a Cartesian 

product of  sets, each one of which consists of two elements: the minimum and the 

maximum observed level of the input factor 
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We claim the following: 

 

Proposition 1 
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input factors within an arbitrary cuboid in the space of the production factors, that is:  

 

∑ ∑
= =

+≥+=
S

i

S

i

ig
i

gi
i

m kbbkaay
1 1

00 Sikkk iii ..1],,[, maxmin =∈ .                         (3.2) 

 

Proof 

We prove our claim by contradiction. Let us assume that there exists a group frontier 

, and a point  within the empirically observed range of the input 

factors , such that (3.2) does not hold, namely: 
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In other words, we are assuming that there exists an interior point in the empirically 

observed set of input factors for which the corresponding output on the group frontier is 

strictly greater than the meta-frontier output at that interior point. 

*g

 

Consider the following system of inequalities: 
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The first part of (3.4) consists of inequalities and it is a subsystem of (3.1). It requires 

that the meta-frontier may not fall below the group frontier in the vertices of the 

empirically observed input set (these vertices are the elements of 

S2

*g

ℵ .) The last inequality in 

(3.4) is reflecting our assumption that at least in one interior point in the observed set of 

inputs the meta-frontier does fall below the group frontier . In what follows, we are going 

to demonstrate that (3.4) is inconsistent. 
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For convenience, set . Multiplying the last inequality in (3.4) by -1 and summing it 

up with each one of the first inequalities in (3.4), we obtain the following: 
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We now show that the first inequalities in (3.5) are inconsistent, which would imply 

that (3.3) does not hold for any interior point of the observed input factors, and meta-frontier 

indeed overarches the individual group frontiers everywhere in the observed input range. 

S2

 

Indeed, denoting , the first  inequalities in (3.5) can be rewritten as follows: iii ba −=Δ S2
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We are claiming that the left hand side of at least one of the inequalities in (3.6) is strictly 

negative, thus rendering (3.6) inconsistent. Indeed, to that purpose, it suffices to find an 

inequality in (3.6) for which , where )()( 0
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inequality in (3.6) corresponds to a point in the Cartesian product 
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In practical terms, one can find such an inequality by taking the following steps: 

 

Step 1: Exclude all inequalities for which . That 

will leave one with inequalities. 
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max}{min,),()( 2
0

2 =−=Δ mkksignsign mS

Step S: Exclude one of the two remaining inequalities for which 

. 

 

The left hand side of the single inequality one is left with after having performed step S is 

strictly negative, which is rendering (3.6) inconsistent. Hence, there does not exist a 

combination of input factor levels in the observed input range such that at this point some 

individual group frontier lies above the meta-frontier that satisfies conditions (3.1), which is 

completing our proof by contradiction. 

 

End of Proof 

 

It is important to notice that -s in the specification (3.2) above may also be powers of 

the original production factors, as well as their interaction terms, which makes it easy for 

Proposition I to accommodate flexible functional specifications such as translog. 

ik

 

The cuboid of production inputs in (3.2) may be chosen arbitrarily so that it may contain a 

specific (not necessarily observed) range of production factors. For example, the cuboid’s 

vertices can be chosen so that the meta-frontier will overarch group frontiers within one 

standard deviation from their means. Of course, the cuboid may be chosen to be the minimal 

multidimensional “box” that contains the observed levels of the production factors, too. 

  



 
3.2  The operational method of estimating meta-frontiers using constrained maximum 

likelihood 

 

The proof of Proposition 1 in subsection 3.1 is directly identifying the steps one has to 

follow in order to estimate the parameters of a meta-frontier based on the constrained 

likelihood maximization procedure. Namely: 

 

Step 1. Identify the minimum and the maximum levels of all input factors in the sample 

and form Cartesian product . 
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Step 2. Form a set of constraints (3.1) 

 

Step 3. Solve the following constrained maximum likelihood problem: 

 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=∀ℵ∈∀+≥+=

+

∑∑

∑ ∑

==

= =

Ggkkbbkaay

ts

kaaLMax

j
S

j

jg
j

g
S

j

j
j

m

N

i

S

j

jj

..1,,

..

),ln(ln

1
0

1
0

1

2

1

0 σ

              (3.7) 

 

where  is the likelihood function corresponding to a specific observation, is the 

number of observations, and is the error’s variance. The maximization in (3.7) is based on 

the assumption of an error term that follows normal distribution with a zero mean and finite 

variance. 
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The number of constraints in (3.7) is , but it can be reduced down to if we 

notice that, in fact, it is enough to require that our meta-frontier is above the highest group 

frontier at each vertex since that will automatically guarantee the meta-frontier output is 

above any other group frontier at these vertices. Of course, in each vertex the maximum 

output can correspond to different group frontiers. Thus, (3.7) is equivalent to 
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In other words, it suffices to require that the meta-frontier overarches the segmented 

frontier  in each vertex of the specified cuboid containing the original combinations of 

the input factors. 

)(~ iky

 

It is important to notice that, since the linear programming methodology results in the 

closest possible linear envelope of the observed outputs (given the constraints), any other 

linear meta-frontier will be overarching this envelope or at least coincide with it. The 

implication is that the estimated meta-technology ratios are going to be smaller, reflecting the 

larger distance between the meta-frontier and group frontiers when the meta-frontier is 

estimated by (3.8). As a result, the efficiency levels with respect to the meta-frontier are 

going to be smaller compared to the case when meta-frontiers are estimated by means of the 

linear programming methodology.   
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4.  Empirical Framework and Results 

 

Similarly to O’Donnell & al. (2008), we are employing the database on agricultural 

production compiled by the United Nations’ Food and Agriculture Organization in order to 

empirically estimate the group and meta-frontiers using the two alternative methods: the LP 

method and the constrained maximum likelihood estimation proposed in this paper. In what 

follows, we discuss the construction of the dataset, describe the empirical methodology we 

used for estimating the group and meta-frontiers, and present our empirical results. 

 

 

4.1  Dataset 

 

We download our data from the Food and Agriculture Organization’s website for 

dissemination of statistical data on the countries’ agricultural performance, faostat.fao.org. 

The output variable is defined as net production of crops and livestock, measured in 

thousands of international dollars. The three input factors are labor, land, and machines. 

Labor is total economically active population in agriculture, thousand people. Land includes 

arable land, land under permanent crops and land under permanent pasture, thousand hectares. 

Machinery is understood in terms of the total number of wheeled and crawler tractors, 

excluding garden tractors. 

 

There are 101 countries in our panel, covering the five years between 1986 and 1990, 

resulting in 505 observations. We divide these countries into the following four groups: 

Advanced Economies, African, Latin American, and Asian countries. The division into these 

four country groups was performed for the illustrative purposes as to the suggested estimation 
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methodology in this paper rather than in the framework of a serious attempt of examining 

productive efficiency of the world agriculture. Table 1 below specifies the exact grouping of 

the countries. Table 2 provides basic summary statistics of our dataset. 

 

Table 1. 
 
Groups of Countries for the Empirical Analysis. 
 

Advanced 
Economies 

Africa Asia Latin America 

Australia, Austria Algeria, Angola Bangladesh, Cambodia Antigua and Barbuda,  
Argentina 

Belgium, Canada Burkina Faso, Burundi China, India Bahamas, Barbados 

Denmark, Finland Cameroon, Chad Indonesia, Iran Belize, Bolivia 

France, Germany Cote d'Ivoire, Egypt Iraq, Israel Brazil, 
British Virgin Islands 

Greece, Ireland Ethiopia, Ghana Laos, Mongolia Chile, Colombia 

Italy, Japan Guinea, Kenya Myanmar, Nepal Costa Rica, Cuba 

Korea Republic of, 
Mexico 

Madagascar, Malawi Pakistan, 
Papua New Guinea 

Dominica, 
Dominican Republic 

Netherlands,  
New Zealand 

Mali, Morocco Philippines, Saudi Arabia Ecuador, El Salvador 

Norway, Portugal Mozambique, Niger Sri Lanka, Syria Grenada, Guadeloupe 

Spain, Sweden Nigeria, Rwanda Thailand, Vietnam 
 

Guatemala, Guyana 

Switzerland, Turkey Senegal, South Africa  Haiti, Honduras 

United Kingdom, 
United States 

Sudan, Tunisia  Jamaica, Martinique 

 Uganda, Zimbabwe  Nicaragua, Panama 

   Peru, Puerto Rico 

   Trinidad and Tobago, 
Uruguay 

   Venezuela 

 

  



Table 2. 

Summary Statistics. 

 

  Advanced 
Economies 

 

Africa 
  

Asia 
  

Latin America 
  

  Mean Standard 
Deviation 

Mean Standard 
Deviation

Mean Standard 
Deviation

Mean Standard 
Deviation 

Output  
(mn I$) 

14800  25500  1481 2118  11400 33300  2564  7736  

Labor 
(thousand) 

1770  2936  3235 4021  27202 88238  980  2644  

Land  
(mn Ha) 

47.62  116.21  21.86 25.38  37.25 95.06  15.07  43.37  

Machines 
(thousand) 

607.19  966.01  10.39 25.93  73.91 201.66  33.89  119.37  

Livestock 
(mn heads) 

110.00  173.00  36.90 54.70  82.80 228.00  65.10  205.00  

Note: I$ is international dollars; we are employing 505 observations in all. 
 

 

 

4.2 Estimation Methodology 

  

  We start by estimating the local group stochastic production frontiers by employing the 

translog functional form of (2.1) for each country group: 
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where subscripts and refer to countries and time periods, respectively, while is 

indexing the four country groups. The three production factors in (4.1) are labor , land , 

and machines 

i t 4..1=k

LN

M , measured as described in section 4.1. The are unknown parameters to 

be estimated for each country group. 
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  Random variables are symmetric shocks representing the purely random part of each 

observation’s inefficiency, while the random variables  are reflecting the inefficient 

managerial behavior. We assume a half-normal distribution for . Technical efficiency 

levels are computed as , where are the estimated inefficiency components of 

the composite error term (Battese and Coelli, 1988). 
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Estimating a Meta-Frontier by Linear Programming 

 

We first estimate the meta-frontier, as defined in (2.4), by solving a linear program (2.5). In 

other words, we are minimizing the sum of absolute deviations of the meta-frontier from the 

group frontiers subject to the requirement that the former may overarch the latter at the 

observed combinations of the production inputs: 
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where , and  are the actually observed levels of labor, land, and machines, 

respectively, in year  for country group . is the vector of the meta-frontier 

parameters. As mentioned in the introduction, (4.2) is currently one of the more popular 

methods of meta-frontier estimation (see e.g. O’Donnell et al, 2008). 
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Estimating a Meta-Frontier by Constrained Maximum Likelihood 

 

  In this study we are offering a method of meta-frontier estimation by means of constrained 

maximum likelihood (CML). As mentioned in the Introduction, constrained maximization of 

the likelihood function corresponding to the estimated meta-frontier is a parametric 

methodology allowing for the statistical inference regarding the estimated parameters, which 

does not come naturally in case of the linear programming estimation. 

  

  We are maximizing the same likelihood function as in Battese and Rao (2002) subject to a 

set of constraints that guarantees the meta-frontier overarches the observed group frontiers in 

a particular set of production factor combinations. As is well noticed in Battese et al. (2004), 

the unconstrained maximization will implicitly employ the assumption that the data 

generating mechanism for the group stochastic frontiers is different from that for the meta-

frontier resulting in the latter failing to overarch the group frontiers at all of the observed 

output levels. By introducing the constraints that guarantee the meta-frontier’s domination 

over the group frontiers either at the observed combinations of inputs or in an arbitrarily 

defined connected set thereof, we guarantee the single data generating mechanism for both 

group frontiers and the meta-frontier (that is, the one defined by (2.1) and (2.3)) . 

 

  Formally, we are solving the following maximization problem in order to estimate the 

meta-frontier parameters: 
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where  is indexing all of the observations in our sample,  is the observed level 

of output, '  is a vector of production factors for a particular country in a particular year, 

and  is the vector of the estimated stochastic frontier parameters in country group . 

505..1=s

sx
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sy
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k

(•φ  is a standard normal probability distribution function. 

 

  The constraints in (4.3) can stipulate that the estimated meta-frontier be overarching the 

country group frontiers either at the actually observed input combinations (in which case (4.3) 

becomes a constrained maximum likelihood counterpart to (2.5)), or within any cuboid 

containing the observed inputs. 

 

  The solution to (4.3) is found by running the CML program in GAUSS on the data. The 

complete program text (except for the constraints in order to save the space) can be seen in 

the Appendix. 
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4.3  Estimation Results 

 

We use empirical specification (4.3) for the constrained maximum likelihood estimation of 

the meta-frontiers, and specification (4.2) for the meta-frontier estimation based on the linear 

programming approach. Our purpose in this subsection is not to investigate the world’s 

agricultural productivity, but to illustrate the differences between the two methodologies 

using real-world data. 

 

We used a range of software packages in order to obtain our empirical results. STATA’s 

frontier command was employed to obtain technical efficiency scores relative to the group 

frontiers. The already mentioned GAUSS procedure was written in order to estimate a meta-

frontier by means of the constrained maximum likelihood methodology offered in this paper 

(see Appendix). The Risk Solver Platform for MS Excel helped us estimate meta-frontiers by 

linear programming in (4.2). 

 

The generalized likelihood test for the null hypothesis that the estimated four group 

frontiers are statistically indistinguishable from each other confirmed that all four stochastic 

frontiers are, indeed, representing four distinct technological environments. In what follows, 

we will present two sets of estimates corresponding to the different type of associated 

constraints for both LP and the CML procedures. Table 3 allows for a comparison of the 

meta-technology ratios and meta-efficiencies obtained using the two methodologies in case 

the meta-frontier is required to overarch group frontiers only at the observed combinations of 

input factors. Table 4 presents the same type of comparison based on the requirement for the 

meta-frontier to overarch individual group frontiers everywhere in the cuboid containing the 

observed range of inputs. The estimates of technical efficiency levels relative to the group 
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frontiers are by construction the same for both types of estimation and constraints and are 

presented in Tables 3 and 4 for convenience. 

 
Table 3. 

Constrained Maximum Likelihood and Linear Programming Estimation of Meta-
Technology Ratios and Meta-Efficiencies: Overarching at the Observed Input 
Combinations 
 
 Constrained Maximum Likelihood Linear Programming 
  Mean Standard 

Deviation 
Min Max Mean Standard

Deviation
Min Max 

  Group Efficiency  Group Efficiency 
Advanced 
Economies 

95.92% 0.30% 95.22% 96.44% 95.92% 0.30% 95.22% 96.44%

Africa 78.52% 6.26% 62.48% 88.92% 78.52% 6.26% 62.48% 88.92%

Asia 63.18% 11.94% 23.85% 82.36% 63.18% 11.94% 23.85% 82.36%

Latin 
America 

65.28% 16.40% 20.27% 89.02% 65.28% 16.40% 20.27% 89.02%

   Meta-Technology Ratio Meta-Technology Ratio 
Advanced 
Economies 

27.32% 16.94% 2.43% 86.09% 27.32% 16.94% 2.43% 86.08%

Africa 24.42% 11.90% 8.04% 57.76% 24.41% 11.90% 8.04% 57.75%

Asia 48.18% 13.63% 27.17% 86.49% 48.18% 13.63% 27.17% 86.49 

Latin 
America 

42.01% 14.16% 17.23% 97.58% 42.01% 14.16% 17.23% 97.56%

  Meta-Efficiency Meta-Efficiency 
Advanced 
Economies 

36.47% 16.17% 7.22% 73.9% 36.46% 16.17% 7.22% 73.87%

Africa 26.13% 8.40% 10.22% 48.37% 26.13% 8.40% 10.22% 48.37%

Asia 31.36% 9.86% 9.48% 64.76% 31.35% 9.86% 9.48% 64.75%

Latin 
America 

22.36% 8.46% 4.74% 38.70% 22.35% 8.46% 4.74% 38.70%

 

 

For both estimation techniques the meta-technology ratios for the four country groups are 

virtually identical to each other, reflecting the fact that the coefficients of the two meta-

frontiers are coinciding up to the fourth digit after the decimal point, except for the intercept 

where the fourth digits are different. As a result, meta-efficiency levels are coinciding as well 

for the two estimation procedures. The advanced economies are estimated to be located closer 

to the meta-frontier relative to the other country groups, even if the meta-technology ratio is 



the highest for the Asian countries. The number of constraints for both estimation procedures 

is 505, which is equal to the total number of observations in our sample. 

 

Table 4 below compares the results of the CML and LP estimations in case the meta-

frontier is required to overarch group frontiers everywhere within the observed range of 

production inputs. As shown in section 3.1, this requirement is fulfilled whenever the meta-

frontier overarches the segmented frontier (defined as the maximum of all group frontiers at 

each point) in the vertices of the observed range of inputs defined as elements of a Cartesian 

product of the two-element sets containing the minimum and the maximum levels of each 

term entering the translog specification (4.1). The number of constraints in case of the latter 

requirement is equal to , where  is the number of input factors. In our case, the number 

of constraints is equal to .  

S2

29

S

512=

 

  

27 
 



28 
 

Table 4. 

Constrained Maximum Likelihood and Linear Programming Estimation of Meta-
Technology Ratios and Meta-Efficiencies:  
Overarching Within the Range of the Observed Inputs. 
  
 Constrained Maximum Likelihood Linear Programming 
  Mean Standard 

Deviation 
Min Max Mean Standard

Deviation
Min Max 

  Group Efficiency  Group Efficiency 
Advanced 
Economies 

95.92% 0.30% 95.22% 96.44% 95.92% 0.30% 95.22% 96.44%

Africa 78.52% 6.26% 62.48% 88.92% 78.52% 6.26% 62.48% 88.92%

Asia 63.18% 11.94% 23.85% 82.36% 63.18% 11.94% 23.85% 82.36%

Latin 
America 

65.28% 16.40% 20.27% 89.02% 65.28% 16.40% 20.27% 89.02%

   Meta-Technology Ratio Meta-Technology Ratio 
Advanced 
Economies 

4.77% 2.75% 0.69% 16.28% 8.96% 10.64% 0.11% 65.27%

Africa 4.27% 1.30% 1.87% 9.03% 6.23% 6.01% 0.44% 53.31%

Asia 9.07% 2.69% 4.53% 19.83% 11.30% 7.41% 1.22% 47.88%

Latin 
America 

7.51% 1.04% 4.61% 10.89% 11.54% 10.69% 0.64% 94.41%

  Meta-Efficiency Meta-Efficiency 
Advanced 
Economies 

7.56% 3.16% 2.76% 15.63% 14.94% 11.66% 0.40% 55.63%

Africa 3.97% 0.98% 2.24% 6.20% 6.45% 3.20% 0.73% 14.44%

Asia 5.46% 1.94% 2.32% 9.66% 8.44% 6.75% 0.75% 33.34%

Latin 
America 

4.54% 1.19% 1.30% 6.45% 5.37% 5.47% 0.23% 26.33%

 

 

Both meta-technology ratios and, correspondingly, the meta-efficiency scores are lower 

compared to their counterparts in Table 3, reflecting changes in the set of constraints 

underlying the estimation in both LP and CML case. Since the modified set of constraints 

requires the meta-frontier to overarch group frontiers on a larger set of input factor 

combinations (not only in a subset of the observable range!), both LP and CML meta-

frontiers are pushed “higher”, resulting in lower meta-technology ratios. However, distinctly 

from the case presented in Table 3, the meta-frontier parameters are now estimated to be 
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different, which shows up in the different estimates of efficiency levels for the two 

procedures.  

 

The meta-technology ratios and meta-efficiency scores are estimated to be higher in case of 

an LP estimation compared to the CML one. In other words, the LP estimation procedure in 

this case has produced a lower meta-frontier compared to the CML one. One reason why the 

CML meta-frontier was estimated to be above the LP one is that the meta-frontier that is 

geometrically the closest one to the group frontiers need not be the likeliest one in the 

statistical sense. 

 

Depending on the type of the constraints imposed on the meta-frontier and the type of the 

estimation procedure, the rankings of country groups in terms of their mean meta-technology 

ratios and meta-efficiency scores appear to be only slightly different. When the meta-frontier 

is required to overarch group frontiers only at the observed input combinations (Table 3), the 

Asian countries appear to be the closest to the global meta-frontier, while the African 

countries are located the furthest from it on average. In case of the meta-frontier overarching 

the group frontiers on a cuboid containing all possible input combinations within the 

observed range, Table 4, the Asian countries are still the closest to the meta-frontier in case of 

the CML estimation procedure, while the LP estimates put the Latin American countries 

marginally closer. The African countries keep on being located the furthest away from the 

meta-frontier. Advanced countries are estimated to be boasting the highest meta-efficiency 

levels relative to the other country groups on average in case of all four estimations. 
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5.  Conclusion 

 

 The purpose of this study is to offer an alternative parametric methodology of estimating 

the meta-frontiers. Our estimation procedure is based on the constrained maximum likelihood 

(CML) methodology and a more flexible set of constraints on the meta-frontier in terms of 

the latter’s ability to overarch the individual group frontiers. We applied our procedure to the 

dataset on the global agricultural production and found that the application of constrained 

maximum likelihood methodology results in the same or “higher” meta-frontier compared to 

the one obtained by means of the linear programming methodology. 

 

Both the individual group frontiers and the meta-frontiers are estimated by maximum 

likelihood, which makes the process of estimating the meta-technology ratios and meta-

efficiency scores inherently more consistent. Since the CML meta-frontier overarches the 

country group frontiers at the observed input combinations, the data generating mechanism in 

case of the proposed CML estimation is consistent with the data generating mechanism for 

the group frontiers. 

 

The CML estimation approach allows for the statistical inference on the estimated 

parameters of the meta-frontier production function that cannot be provided naturally in case 

of the linear programming estimation, although bootstrapping and simulation may help 

alleviate the difficulty.  

 

In our view, it is an interesting question whether there exist conditions under which the 

CML procedure produces the same meta-frontier (and, hence, the same meta-technology 

ratios and meta-efficiency scores) as does the LP procedure provided, of course, the same set 
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of constraints on the meta-frontier. However, the exploration of this issue is beyond the scope 

of this study. 
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Appendix: The GAUSS Program for Constrained Maximum Likelihood 

//Include CML library 
library cml; 
#include cml.ext; 
cmlset; 
 
//Input data from Excel spreadsheet 
raw=xlsreadm("forgauss.xls","a1:k500",1,0); 
 
//Define likelihood function: x contains parameters, z is data matrix 
proc lpr(x,z); 
  local s,m; 
  s=x[11]; 
  m=z[.,2:11]*x[1:10,.]; 
  retp( ln( pdfn( (z[.,1]-m)/sqrt(s) ) )-ln(sqrt(s))); 
endp; 
 
//Set initial values for parameters x 
x0={12.18, -0.42, -0.11, 0.47, 0.04, 0.006, 0.016, 0.06, -0.05, -0.01, 0.12}; 
 
//Constrain the meta frontier to overhaul the local frontiers at specific combinations of inputs 
_cml_C={1 7.466228 10.56328 11.32233 55.74455 111.583 128.1952 78.86789 84.53512 119.601 0, 
 

<elements of the matrix of constraints C> 
 

1 7.928046 9.469237 9.72675 62.85391 89.66646 94.60967 75.07255 77.11412 92.1049 0, 
1 7.96137 9.473474 9.763076 63.38341 89.7467 95.31765 75.42183 77.72746 92.49024 0}; 
 
_cml_D={17.46638, 
 
<elements of the constraints’ right hand sides D> 
 
16.65534, 
16.67542}; 
 
//Constrain the standard deviation to be positive 
_cml_Bounds={-50 50, -50 50, -50 50, -50 50, -50 50, -50 50, -50 50, -50 50, -50 50, -50 50, 0.001 50}; 
 
//Perform constrained likelihood maximization 
{x,f,g,cov,ret}=CMLPrt(CML(raw,0,&lpr,x0)); 
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