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Abstract

We modify the dynamic pivot mechanism of Bergemann and Välimäki (Econo-
metrica, 2010) in such a way that lump-sum fees are collected from the play-
ers. We show that the modified mechanism satisfies ex-ante budget balance as
well as ex-post efficiency, periodic ex-post incentive compatibility, and periodic
ex-post individual rationality, as long as the Markov chain representing the evo-
lution of players’ private information is irreducible and aperiodic and players
are sufficiently patient. We also show that the diverse preference assumption of
Bergemann and Välimäki may preclude budget balance.
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On Budget Balance of the Dynamic Pivot Mechanism

1. Introduction

The research on dynamic mechanism design is recently surging. As the surveys of

Bergemann and Said (2010) and Vohra (2012) suggest, the literature can be divided into

two categories. The first category deals with the environments in which the population

of players changes over time, but their private information is fixed, whereas the second

category deals with the environments in which the population of players is fixed, but their

private information changes over time.

This paper belongs to the second category. Notable papers in this category include

Athey and Segal (2013) and Pavan, Segal, and Toikka (2014). In particular, Bergemann

and Välimäki (2010) introduced the dynamic pivot mechanism, which is a generalization

of the renowned VCG (Vickrey-Clarke-Groves) mechanism to the dynamic setting. The

dynamic pivot mechanism is ex-post efficient, periodic ex-post incentive compatible, and

periodic ex-post individually rational. The problem with this mechanism, however, is

that it may run an expected budget deficit. In this paper, we modify the dynamic pivot

mechanism in a way that lump-sum fees are collected from the players so that the modified

mechanism satisfies ex-ante budget balance as well as the aforementioned property of ex-

post efficiency, periodic ex-post incentive compatibility, and periodic ex-post individual

rationality.

In the next section, we set up a general model and establish that the dynamic pivot

mechanism with lump-sum fees is ex-post efficient, periodic ex-post incentive compatible

and individually rational, and ex-ante budget balancing if the Markov chain representing

the evolution of players’ private information is irreducible and aperiodic and players are

sufficiently patient. This result holds essentially since the participation constraints of the

worst-off types are relaxed in the dynamic setting. On the other hand, we show that the

diverse preference assumption of Bergemann and Välimäki (2010) may preclude budget
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balance. The reason is that this assumption makes the Markov chain reducible. Section 3

contains discussion on recent related research and future agenda.

2. Main Results

We first present a general model based on Bergemann and Välimäki (2010), and then

discuss budget balance of the dynamic pivot mechanism.

2.1. The setup

There is a set I = {1, . . . , n} of players and a countable number of periods, indexed

by t ∈ {0, 1, . . .}. Player i’s type in period t is θt
i ∈ Θi. We assume that this is private

information. Let θt = (θt
1, . . . , θ

t
n) and Θ =

∏n
i=1 Θi.1 To deliver the main idea without

getting involved into many subtle mathematical issues, we will assume that Θ is discrete

(i.e., finite or countably infinite). After θt ∈ Θ is realized in period t, a public action

at ∈ A is determined. In addition, let zt
i ∈ IR be a monetary transfer from player i in

period t. Given sequences (θ0, θ1, . . .) of type profiles and (a0, a1, . . .) of actions, together

with (z0
i , z1

i , . . .) of i’s monetary transfers, player i’s payoff is

∞∑
t=0

δt
(
vi(θt

i , a
t)− zt

i

)
,

where (i) δ is a common discount factor and δ < 1, and (ii) vi(·) is a reward function.

Note that we deal with the private-values environment in that player i’s reward function

depends only on player i’s type. We also assume that |vi(θi, a)| ≤ C < ∞ for all i, θi, and

a.

The dynamic evolution of players’ types is represented by a Markov chain. Let

p(θt+1|θt, at) be the transition probability that type profile θt+1 will be realized in pe-

riod t + 1 when the type profile is θt and the action is at in period t. Observe that, except

for the fact that θ is private information, this environment fits into a Markov decision

1 We may include public information, say θt
0 ∈ Θ0, to be more realistic. We dispense with this additional

notation for clearer presentation of the main idea.
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process with Θ being the set of states.2

We consider a dynamic direct mechanism that asks each player to report her type

(i.e., state) in each period. Let rt
i denote player i’s report in period t, which may or may

not be equal to her true type θt
i . Let

ht
i = (θ0

i , r0, a0, θ1
i , r1, a1, . . . , θt−1

i , rt−1, at−1, θt
i)

be a private history of player i in period t, where each rs = (rs
1, . . . , r

s
n) for s = 0, . . . , t− 1

is a report profile, and let Ht
i be the set of all such histories. A (pure) strategy for player

i in period t is a function r̂t
i : Ht

i → Θi. A strategy is truth-telling if r̂t
i(h

t
i) = θt

i for all ht
i.

In addition, let

ht = (r0, a0, r1, a1, . . . , rt−1, at−1, rt)

be a public history in period t and let Ht be the set of all such histories. Observe that,

when players adopt the truth-telling strategy, the private histories do not contain more in-

formation than the public histories on the equilibrium path. Since we are mainly concerned

with incentive compatible mechanisms in which the truth-telling strategy is an equilibrium,

we will not henceforth distinguish between true states and reported states (mainly to save

notations).

In each period, the mechanism decides on the action based on the actions chosen up

to the previous period and the reports up to the beginning of this period. Thus, when

players adopt the truth-telling strategy, a deterministic (history-dependent) decision rule

of the mechanism in period t is a function ât : Ht → A. A special class of decision rule is

the deterministic Markovian decision rule that chooses an action based only on the current

state, i.e., ât : Θ → A. Moreover, a randomized decision rule ât specifies a probability

distribution on the set of actions. Randomized decision rules may be history-dependent

or Markovian. A policy of the mechanism is a sequence of decision rules π = (â0, â1, . . .).

Let Π be the set of all policies.

2 Note that this Markov formulation is essentially without loss of generality, since any dynamic model can
be described using Markov notation by expanding the state space appropriately. See Stokey and Lucas
(1989) or Athey and Segal (2013) for an excellent discussion.
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An efficient policy is π∗ ∈ Π that maximizes the expected discounted sum of players’

rewards. That is,

π∗ ∈ arg max
π∈Π

Eπ
θ

[ ∞∑
t=0

δt
n∑

i=1

vi(θ̃t
i , ã

t)
]

for every θ ∈ Θ. By the way, we will assume throughout that the relevant maximum is

attained without specifying sufficient conditions. Since Θ is discrete, this assumption is

valid when (i) A is finite or (ii) A is compact, vi(θi, a) is continuous in a for each i and

θi, and p(θ′|θ, a) is continuous in a for each θ and θ′. Other sufficient conditions may also

guarantee the existence of an efficient policy π∗.3

In addition, the mechanism specifies the monetary transfers based on public histo-

ries. A deterministic (history-dependent) transfer rule of the mechanism in period t is a

collection of functions {ẑt
i : Ht → IR}i∈I . Let ẑt = (ẑt

1, . . . , ẑ
t
n). Markovian transfer rules

and randomized transfer rules can be defined similarly. We assume that the mechanism

is committed to future transfers. In summary, a dynamic direct mechanism is represented

by a family of decision rules and monetary transfer rules, {ât, ẑt}∞t=0.

We call a policy stationary if ât = â for all t. A stationary policy has the form

π = (â, â, . . .), which is denoted by â∞. For the stationary environment considered in

this paper, we can restrict our attention to deterministic stationary policies when finding

a policy that maximizes the expected discounted sum of players’ rewards.4 An efficient

policy thus has the form π∗ = (a∗)∞ where a∗ : Θ → A.

The social welfare function W : Θ → IR can be defined recursively by the following

optimality equation (or Bellman equation):

W (θ) =
n∑

i=1

vi(θi, a
∗(θ)) + δ

∑

θ′∈Θ

p(θ′|θ, a∗(θ))W (θ′).

By the way, with the normalization of players’ autarky payoff levels to zero, it is natural to

impose the positive surplus assumption that
∑n

i=1 vi(θi, a
∗(θ)) ≥ 0 for all θ ∈ Θ, with at

3 See Proposition 4.4.3. of Puterman (2005) or Stokey and Lucas (1989).

4 See Theorem 6.2.7. of Puternam (2005). Note that a deterministic stationary policy is a deterministic
Markovian policy.
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least one strict inequality. The weak inequality holds since one alternative available to the

mechanism is to let the players enjoy their autarky payoff levels, and the strict inequality

is assumed since, otherwise, the problem is not interesting.

2.2. The dynamic pivot mechanism

To define the dynamic pivot mechanism, we use the usual notational convention that

the subscript −i pertains to players other than i. Thus, θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn),

Θ−i =
∏

j 6=i Θj , and so on. Let π∗−i = (a∗−i)
∞ where a∗−i : Θ → A is a deterministic

decision rule that maximizes the expected discounted sum

Eπ
θ

[ ∞∑
t=0

δt
∑

j 6=i

vj(θ̃t
j , ã

t)
]

of the rewards of players other than i.5 Define the social welfare for players other than i,

denoted by W−i : Θ → IR, recursively by

W−i(θ) =
∑

j 6=i

vj(θj , a
∗
−i(θ)) + δ

∑

θ′∈Θ

p(θ′|θ, a∗−i(θ))W−i(θ′).

Define player i’s marginal contribution Mi(θ) = W (θ)−W−i(θ), and in addition, the flow

marginal contribution mi(θ) by the equation

Mi(θ) = mi(θ) + δ
∑

θ′∈Θ

p(θ′|θ, a∗(θ))Mi(θ′).

Then,

mi(θ) =W (θ)−W−i(θ)− δ
∑

θ′∈Θ

p(θ′|θ, a∗(θ))
(
W (θ′)−W−i(θ′)

)

=
n∑

j=1

vj(θj , a
∗(θ))−

∑

j 6=i

vj(θj , a
∗
−i(θ))

+δ
( ∑

θ′∈Θ

p(θ′|θ, a∗(θ))W−i(θ′)−
∑

θ′∈Θ

p(θ′|θ, a∗−i(θ))W−i(θ′)
)
.

5 The existence of such a deterministic stationary policy is guaranteed by our assumptions.
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The dynamic pivot mechanism is a dynamic direct mechanism with an efficient policy

π∗ = (a∗)∞ together with the stationary monetary transfer rule z∗i : Θ → IR given as

z∗i (θ) =vi(θi, a
∗(θ))−mi(θ)

=
∑

j 6=i

(
vj(θj , a

∗
−i(θ))− vj(θj , a

∗(θ))
)

+δ
( ∑

θ′∈Θ

p(θ′|θ, a∗−i(θ))W−i(θ′)−
∑

θ′∈Θ

p(θ′|θ, a∗(θ))W−i(θ′)
)
.

The notion of incentive compatibility is the periodic ex-post incentive compatibility:

A dynamic direct mechanism is periodic ex-post incentive compatible if the truth-telling

strategy is a best response for every player i and every true type profile θ in every period

t. Bergemann and Välimäki (2010) have shown in their theorem 1 that the dynamic pivot

mechanism is periodic ex-post incentive compatible.

Observe that player i’s flow payoff in the dynamic pivot mechanism when the type

profile is θ is mi(θ). Observe also that player i’s payoff in a period with type profile

θ is Mi(θ), which is non-negative by definition of W (θ) and W−i(θ) together with the

normalization of autarky payoff levels to zero. Thus, the periodic ex-post participation

constraints are satisfied. We note that, whereas commitment of the mechanism to future

transfers is assumed, no commitment of the players is necessary for the dynamic pivot

mechanism since the mechanism is periodic ex-post incentive compatible and individually

rational.

It is well-known that the dynamic pivot mechanism may run a budget deficit even

in expectation for many problems, such as the dynamic bilateral trading. To cope with

the budget problem, we modify the dynamic pivot mechanism in a way that lump-sum

(participation) fees are collected from the players.6

6 The idea of charging lump-sum fees in the class of Groves mechanisms appears in Makowski and Mezzetti
(1994), Williams (1999), Krishna and Perry (2000), and Yoon (2001, 2008) for the static setting as well as
in Skrzypacz and Toikka (2015) for the dynamic setting.
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2.3. Budget balance of the dynamic pivot mechanism

We now introduce several notations to discuss budget balance. Let x ∈ ∆(Θ) denote

the initial distribution of θ0 = (θ0
1, . . . , θ

0
n), and let P be the transition matrix on Θ.

Thus, we assume that the transition probability is independent of the action a. Then, the

distribution of θt is xT P t, where xT is the transpose of the column vector x and P t is the

t-th power of the matrix P . The flow budget deficit when the state is θ is −∑n
i=1 z∗i (θ).

Let −z∗ be the column vector of flow budget deficit, i.e., −z∗ = (−∑n
i=1 z∗i (θ))θ∈Θ. Then,

the expected budget deficit in period t is given by −xT P tz∗. Let xi|θ0
i

be the conditional

distribution vector of initial distribution, given θ0
i . Since i knows her type θ0

i at the

beginning of period zero, xT
i|θ0

i
P t is the distribution of θt that player i with θ0

i perceives.

Let mi be the column vector of i’s flow payoffs, i.e.,

mi = (vi(θi, a
∗(θ))− z∗i (θ))θ∈Θ.

Then, the expected payoff of player i with θ0
i in period t is xi|θ0

i
P tmi. Thus, ex-ante

budget balance can be achieved with lump-sum fees if and only if

−
∞∑

t=0

δtxT P tz∗ ≤
n∑

i=1

inf
θ0

i
∈Θi(x)

∞∑
t=0

δtxT
i|θ0

i
P tmi (∗)

where Θi(x) is the set of θi ∈ Θi for which there exists θ−i such that (θi, θ−i) belongs

to the support of x. That is, ex-ante budget balance can be achieved if and only if the

expected discounted sum of the payoffs of the worst-off types is greater than or equal to

the expected budget deficit: The mechanism can charge sufficient lump-sum fees to cover

the budget deficit without violating any player’s participation constraint.

Observe that, since Mi(θ) ≥ 0 for all i and θ, the inequality (∗) is easily satisfied

when
∑∞

t=0 δtxT P tz∗ ≥ 0, for example, when z∗i (θ) ≥ 0 for all i and θ. Since each player’s

transfer is equal to her negative externality on the society in the VCG mechanism and

consequently in the dynamic pivot mechanism, we have z∗i (θ) ≥ 0 for environments with

nonpositive externality such as the auction. In contrast, for environments with positive

externality, such as the bilateral trading, the various double auctions in which some players
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are suppliers of the resources, or the situation in which multiple players are needed together

to improve the social welfare, we generally have
∑∞

t=0 δtxT P tz∗ < 0. We now present a

sufficiency result for ex-ante budget balance.

Theorem 1. Assume that the transition probability is independent of the action. Assume

also that the set Θ is finite and the Markov chain is irreducible and aperiodic. Then, for

any initial distribution x ∈ ∆(Θ), ex-ante budget balance is achieved for sufficiently large

δ.

Proof. Let vi = (vi(θi, a
∗(θ)))θ∈Θ. Then,

−
∞∑

t=0

δtxT P tz∗ =
n∑

i=1

∞∑
t=0

δtxT P tmi −
n∑

i=1

∞∑
t=0

δtxT P tvi

and
n∑

i=1

min
θ0

i
∈Θi(x)

∞∑
t=0

δtxT
i|θ0

i
P tmi =

n∑

i=1

∞∑
t=0

δtxT
i P tmi

where xi is a value that attains the minimum for i = 1, . . . , n. Thus, (∗) is satisfied if and

only if
n∑

i=1

∞∑
t=0

δtxT
i P tmi −

n∑

i=1

∞∑
t=0

δtxT P tmi +
n∑

i=1

∞∑
t=0

δtxT P tvi ≥ 0.

Let p
(t)
θθ′ be the θθ′-th element of P t. By the well-known facts on finite Markov chains,

there is a unique stationary distribution µ such that (i) p
(t)
θθ′ → µθ′ as t → ∞ for all

θ, θ′ ∈ Θ, and (ii) µθ′ > 0 for all θ′ ∈ Θ. Thus, for any ε > 0, there is t0 such that

|p(t)
θθ′ − µθ′ | < ε for t ≥ t0.

Observe that, for t ≥ t0, we have

xT
i P tmi =

∑

θ∈Θ

∑

θ′∈Θ

p
(t)
θθ′xi,θmi,θ′ >

∑

θ∈Θ

∑

θ′∈Θ

(µθ′ − ε)xi,θmi,θ′ =
∑

θ′∈Θ

(µθ′ − ε)mi,θ′

since
∑

θ xi,θ = 1. (Here, xi,θ is the θ-th element of the column vector xi and mi,θ′ is the

θ′-th element of the column vector mi. The same convention applies below.) Thus,

n∑

i=1

∞∑
t=0

δtxT
i P tmi >

n∑

i=1

t0−1∑
t=0

δtxT
i P tmi +

δt0

1− δ

∑

θ′∈Θ

(µθ′ − ε)
( n∑

i=1

mi,θ′
)
.
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Likewise,

n∑

i=1

∞∑
t=0

δtxT P tmi <

n∑

i=1

t0−1∑
t=0

δtxT P tmi +
δt0

1− δ

∑

θ′∈Θ

(µθ′ + ε)
( n∑

i=1

mi,θ′
)

and
n∑

i=1

∞∑
t=0

δtxT P tvi >

n∑

i=1

t0−1∑
t=0

δtxT P tvi +
δt0

1− δ

∑

θ′∈Θ

(µθ′ − ε)
( n∑

i=1

vi,θ′
)
.

Therefore,

n∑

i=1

∞∑
t=0

δtxT
i P tmi −

n∑

i=1

∞∑
t=0

δtxT P tmi +
n∑

i=1

∞∑
t=0

δtxT P tvi

>

n∑

i=1

t0−1∑
t=0

δtxT
i P tmi −

n∑

i=1

t0−1∑
t=0

δtxT P tmi +
n∑

i=1

t0−1∑
t=0

δtxT P tvi

+
δt0

1− δ

∑

θ′∈Θ

{
(µθ′ − ε)

( n∑

i=1

vi,θ′
)
− 2ε

( n∑

i=1

mi,θ′
)}

.

Now,
n∑

i=1

t0−1∑
t=0

δtxT P tvi ≥ −1− δt0

1− δ
nC

since |vi(θi, a)| ≤ C by assumption. Likewise,

n∑

i=1

t0−1∑
t=0

δtxT
i P tmi ≥ −1− δt0

1− δ
nC ′ and

n∑

i=1

t0−1∑
t=0

δtxT P tmi ≤ 1− δt0

1− δ
nC ′

since |mi(θ)| ≤ C ′ < ∞.7 Thus,

n∑

i=1

t0−1∑
t=0

δtxT
i P tmi −

n∑

i=1

t0−1∑
t=0

δtxT P tmi +
n∑

i=1

t0−1∑
t=0

δtxT P tvi ≥ −1− δt0

1− δ
n(C + 2C ′).

Next, we can choose ε small enough so that

∑

θ′∈Θ

{
(µθ′ − ε)

( n∑

i=1

vi,θ′
)
− 2ε

( n∑

i=1

mi,θ′
)}

> η0

for some positive η0 > 0. To see this, first note that there exist η1 > 0 and η2 > 0

such that (i) µθ′ > η1 for all θ′ ∈ Θ by the finiteness of Θ and (ii)
∑

θ′∈Θ

∑n
i=1 vi,θ′ =

7 Observe that Mi(θ) is finite for all θ since both W (θ) and W−i(θ) are finite. Thus, mi(θ) is finite for

all θ. Since Θ is a finite set, |mi(θ)| is bounded by a constant C′ < ∞.
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∑
θ′∈Θ

∑n
i=1 vi(θ′i, a

∗(θ′)) > η2 by the positive surplus assumption. Let η0 < η1η2 and

choose

ε < min
{

η1,
η1η2 − η0

η2 + 2n|Θ|C ′
}

.

Then,

∑

θ′∈Θ

(µθ′ − ε)
( n∑

i=1

vi,θ′
)
− 2ε

∑

θ′∈Θ

( n∑

i=1

mi,θ′
)

> (η1 − ε)η2 − 2εn|Θ|C ′ > η0

where |Θ| is the cardinality of Θ. Note that η0 is independent of the discount factor δ.

Thus, as δ → 1, the term −(1− δt0)n(C + 2C ′)/(1− δ) goes to −t0n(C + 2C ′) whereas

δt0

1− δ

∑

θ′∈Θ

{
(µθ′ − ε)

( n∑

i=1

vi,θ′
)
− 2ε

( n∑

i=1

mi,θ′
)}

goes to infinity. Therefore, inequality (∗) is satisfied and so ex-ante budget balance is

achieved. ♦

This theorem establishes that the dynamic pivot mechanism with lump-sum fees is

ex-post efficient, periodic ex-post incentive compatible and individually rational, and ex-

ante budget balancing. This was done by showing that inequality (∗) is satisfied under

appropriate assumptions on the Markov chain and the discount factor: The essence is that

the participation constraints of the worst-off types are relaxed when the Markov chain is

irreducible and aperiodic and the discount factor is sufficiently large. It is worth mentioning

a result of Athey and Segal (2013) at this juncture. They show in their proposition

4 that, with the additional assumption of the independence of transition probabilities

across players, budget balance of an efficient policy can be sustained in a perfect Bayesian

equilibrium of the decentralized game when the Markov chain has a unique ergodic set

and the discount factor is sufficiently large. Compared to their result, we (i) focus on the

mechanism design problem per se, (ii) dispense with the independence assumption, and

(iii) employ the stronger concept of periodic ex-post incentive compatibility rather than

the perfect Bayesian incentive compatibility. Moreover, while they impose the ergodicity
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assumption directly on the efficient policy, we impose the irreducibility and aperiodicity

assumption on the transition probability.8 On the other hand, their result applies to general

efficient policies whereas our result is concerned with the dynamic pivot mechanism.

It is now straightforward to see that budget balance cannot be achieved if the partic-

ipation constraints of the worst-off types are very tight. One such case may occur when

the diverse preference assumption of Bergemann and Välimäki (2010) holds. By part (i)

of the diverse preference assumption, for all i, there exists θi ∈ Θi such that player i’s type

stays at θi forever and vi(θi, a) = 0 for all a ∈ A. This implies that Mi(θi, θ−i) = 0 and so

mi(θi, θ−i) = 0 for all θ−i. Thus, the right-hand side of (∗) is zero when θi for all i lies in

the support of the initial distribution x ∈ ∆(Θ), and so the inequality cannot be satisfied

unless
∑∞

t=0 δtxT P tz∗ ≥ 0.

Note that the diverse preference assumption makes the Markov chain reducible and

keeps the payoffs of the worst-off types to zero in this case. Hence, the mechanism cannot

charge positive participation fees to cover the budget deficit. Needless to say, budget

balance may be achieved for some initial distributions even under the diverse preference

assumption. A trivial example can be easily constructed when the initial distribution is

concentrated on a type profile, say θ = (θ1, . . . , θn), and players’ types stay there forever.

More generally, budget balance is possible when θi’s are not in the support of the initial

distribution and these states are entered only with a small probability.9

3. Discussion

We have shown that the dynamic pivot mechanism can be modified with lump-sum

fees so that it is ex-post efficient, periodic ex-post incentive compatible, periodic ex-post

individually rational, and ex-ante budget balancing when the Markov chain is irreducible

and aperiodic and players are sufficiently patient. We have also shown that budget balance

8 Since an efficient policy is stationary with a∗ : Θ → A, the assumptions on the induced Markov chain
should ultimately pertain to the transition probability.

9 I thank an anonymous referee for pointing this out.
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may not be achieved under the diverse preference assumption.

Observe that Theorem 1 in particular implies that the impossibility result of Myerson

and Satterthwaite (1983) for bilateral trading no longer holds in the dynamic setting.

Concerning the dynamic bilateral trading problem, Skrzypacz and Toikka (2015) establish

the payoff-equivalence property in quite a general setup with multi-dimensional asymmetric

information at the initial period, and then characterize a necessary and sufficient inequality

condition for the existence of efficient, incentive compatible, individually rational, and

budget-balancing mechanisms.10 With the inequality condition, they explore how the

feasibility of efficient trading depends on (i) the persistence of the Markov process, (ii) the

initial private information about process parameter, and (iii) the frequency of interaction.

They use the same mechanism, i.e., the dynamic pivot mechanism, to obtain the

characterization result. Note that this is an extension to the dynamic setting of the char-

acterizations of Williams (1999) and Krishna and Perry (2000): These papers first show

that, under certain conditions on the primitives and/or the mechanism, any incentive

compatible mechanism is payoff equivalent to a Groves mechanism, and then characterize

necessary and sufficient conditions using this Groves mechanism. In contrast, we focus on

the dynamic pivot mechanism itself and explicitly examine when and how the inequality

for budget balance may be satisfied, that is, we prove budget balance of the dynamic pivot

mechanism with lump-sum fees under appropriate assumptions on the Markov chain and

the discount factor. We want to mention that the payoff equivalence property does not

hold when the set Θ of type profiles is finite, implying that there may exist another effi-

cient, incentive compatible, individually rational, and budget-balancing mechanism even

when inequality (∗) is not satisfied. On the other hand, it appears to be quite hard to

prove a result similar to Theorem 1 when Θ is not finite.

Lamba (2013) also studies the dynamic bilateral trading. He introduces the concept of

interim budget balance, establishes a history-dependent version of the payoff equivalence

10 Their inequality is essentially the same as inequality (∗) adapted to bilateral trading.

13



property, and characterizes a necessary and sufficient condition for the existence of ex-

post efficient, periodic ex-post incentive compatible and individually rational, and interim

budget balancing mechanisms via the collateral dynamic VCG mechanism. Hence, this

paper is close in spirit to Skrzypacz and Toikka (2015).11

Let θt−1 be the type profile in period t−1, and let x(θt−1) be the distribution of type

profile θt in period t, given θt−1. In addition, let x(θt−1)i|θt
i

be the conditional distribution

vector of type profile in period t, given θt−1 and θt
i . Interim budget balance is satisfied if,

for all t and θt−1,

−
∞∑

τ=t

δτ−tx(θt−1)T P tz∗ ≤
n∑

i=1

inf
θt

i
∈Θi(x(θt−1))

∞∑
τ=t

δτ−tx(θt−1)T
i|θt

i
P tmi.

Interim budget balance is obviously stronger than ex-ante budget balance.12 On the other

hand, observe that, in the (infinite-horizon) stationary environment of the present paper,

interim budget balance is implied by ex-ante budget balance if (i) ex-ante budget bal-

ance holds for a set of possible initial distributions, denoted by ∆0(Θ) ⊆ ∆(Θ), and (ii)

x(θt−1) ∈ ∆0(Θ) for all t and θt−1. Take, for example, the case when ∆0(Θ) consists of all

full-support distributions, and the transition matrix P induces a full-support distribution

for any full-support distribution. Another case is when ∆0(Θ) = ∆(Θ) and so ex-ante

budget balance holds for any initial distribution x ∈ ∆(Θ).

We now show that Theorem 1 in fact implies, under the assumptions of that theorem,

interim budget balance is achieved for sufficiently large δ. We have x(θt−1) = x(θt−1) by

the Markov property, and the set ∆(Θ) = {x(θt−1)|t = 0, 1, . . .} of all possible distributions

in any period is finite when Θ is finite. For each member of ∆(Θ), there exists a critical

value of δ such that ex-ante budget balance is achieved for δ greater than or equal to this

value by Theorem 1. Let δ be the maximum of these critical values, which is bounded away

11 By the way, both Skrzypacz and Toikka (2015) and Lamba (2013) discuss the second-best mechanism
in limited environments.

12 We have x(θt−1) = x when t = 0.
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from 1 by the finiteness of ∆(Θ). Thus, interim budget balance is achieved for δ ≥ δ.13

Finally, note that the theorem was established for the case when the type space is

finite and the Markov chain is independent of the actions. Hence, it is an interesting

future agenda to see whether this result continues to hold when the type space is countably

infinite or even more general, and when the transition kernel depends on the actions.
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