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Abstract

We examine free riding for entry deterrence in license auctions with heterogeneous incum-

bents. We establish the monotonicity of randomized preemptive bidding equilibria: an incum-

bent with a higher entry-loss rate has greater free-riding incentive, choosing a lower deterring

probability. We then identify conditions for the existence of a series of fully or partially par-

ticipating equilibria such that two or more incumbents with bounded heterogeneity in their

entry-loss rates participate in randomized preemptive bidding. As an application, we examine

a simple case of a bipartite group of participating incumbents consisting of one “leader” and

many “followers”. We show that the policy of limiting the leader’s participation (set-asides for

entrants, limiting participation of incumbents with excessive market shares, etc.) may or may

not increase entry probability.
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1 Introduction

Entry deterrence is one of the major issues of competition policy and law. Its negative social

consequences are rather apparent and well established by Gilbert and Newbery (1982) in an auc-

tion with a monopolistic incumbent and an entrant, and quite earlier by Arrow (1962) in patent

licensing. However, its effectiveness and policy implications are somewhat subtle in industries with

multiple incumbent competitors due to the free-rider problem among them. When incumbents

cannot collude, entry deterring investment by an incumbent becomes a “public good” for the other

incumbents, and this public good aspect may lead incumbents to make suboptimal investment

decisions. Nevertheless, Bernheim (1984) and Gilbert and Vives (1986) find that the free-rider

problem is not a significant factor in models of entry deterring investment decisions. Yet, adding

to their models uncertainty in the effectiveness of preemptive investment, Waldman (1987) shows

that the free-rider problem can be significant and incumbents may underinvest in entry deterrence.

While uncertainty is exogeneous in Waldman (1987), in license auctions with externalities (con-

cerning downstream competition), uncertainty arises endogeneously with incumbents’ randomized

attempts to bid preemptively and a new firm may have a chance to win a license, as shown by

Hoppe, Jehiel and Moldovanu (2006; hereinafter HJM).

Despite the vast interest and extensive study on entry deterrence, little attention has been paid

to how heterogeneity of incumbents shapes differential incentives of entry deterrence and affects in-

cumbents’ preemptive decisions. Our main objective is to investigate the free-rider problem in entry

deterrence among heterogeneous incumbents. Incumbent heterogeneity is quite common in many

industries. For example, the mobile telephony industry worldwide tends to have a few dominant

or leading companies and followers.1 Understanding the effects of incumbent heterogeneity in the

context of entry deterrence helps us provide more robust policy implications. We consider this issue

in a single license auction with downstream competition. It is a simple case of the multi-license

auction studied by HJM, who consider homogeneous incumbents.

We establish the monotonicity of preemptive bidding participation with regard to the entry-loss

rate (the rate of loss an incumbent faces when an entry takes place relative to her intrinsic value

of the license). In all equilibria with two or more incumbents participating in preemptive bidding,

the higher the entry-loss rate, the lower the probability of preemptive bidding. An incumbent with

a higher entry-loss rate has greater incentive of entry-deterrence. Then, at first glance, our mono-

tonicity result seems counterintuitive since it would make sense for an incumbent with a higher

entry-loss rate to have a greater incentive of preemption and to bid more aggressively. However,

in order to make two or more incumbents participate in preemptive bidding, all participating in-

cumbents need to engage in strictly randomized preemption, which requires giving them free-riding

incentive. When an incumbent has a higher entry-loss rate, to give her free-riding incentive, the

other incumbents need to preemptively bid with greater probability. This results in an inverse

relation between entry-loss rates and probabilities of preemptive bidding. A similar counterintu-

itive comparative statics for the case of strictly mixed strategies was formalized by Crawford and

1See the Federal Communications Commission twentieth report (FCC 17-126) for asymmetry in the U.S. market

share among mobile companies during 2013-2016: 35% for Verizon Wireless, 32.4% for AT & T, 17.1% for T-mobile,

14.3% for Sprint, and 1.2% for U.S. Cellular; and the Ofcom Communications Market Report 2016 for asymmetry in

the U.K. market share in 2015: 29% for EE, 27% for O2, 19% for Vodafone, 15% for others, and 11% for Three.
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Smallwood (1984) in two-player zero-sum games.2 The comparative statics is experimentally tested

and endorsed by Amaldoss and Sanjay (2002).

Based on the monotonicity result, we show that if entry-loss rates exhibit bounded heterogeneity,

a fully participating randomized preemption (FPRP) equilibrium exists and is unique. In a FPRP

equilibrium, none of the participating incumbents is perfectly free-riding and none of them takes

the full responsibility for entry deterrence, either. Next, we examine a more interesting case:

equilibria where two or more (not necessarily all) incumbents participate in preemptive bidding,

called a partially participating randomized preemption (PPRP) equilibrium. We show that a PPRP

equilibrium exists if entry-loss rates of the participating incumbents exhibit bounded heterogeneity

and their maximum rate is greater than the rates of non-participating incumbents. Thus, no non-

participating incumbent can have an entry-loss rate greater than that of any of the participating

incumbents. Hence, our results provide two contrasting monotonicity properties, that is, between

participants and non-participants, entry-loss rates are “greater” for the former than the latter; yet

among participants, entry-loss rates are greater for incumbents whose probabilities of preemptive

bidding are lower.

We next examine the case where those incumbents participating in randomized preemptive

bidding constitute a bipartite group of a single leader and followers, which arises in both Cournot

competition and Stackelberg competition. We show that existence of these “leader-follower” PPRP

equilibria may hold without the bounded-heterogeneity condition. In industries with a leader and

followers, a reasonable policy option promoting the competitiveness of the downstream market is

to exclude the leader in the auction design. This policy may or may not increase the chance of

a new entry; the ramification of the two possibilities is identified through certain conditions on

equilibrium strategies.

For government procurement and sales, many countries adopt set-asides or policies to exclude

some incumbents with excessive market power, and this area is of increasing interest in research

and policy (for example, Athey, Coey, and Levin (2013) and Jehiel and Lamy (2015)). These

policies are used to promote competitiveness in the down-stream market by limiting the market

power of leading incumbents or by encouraging a new entry (see Ayres and Cramton (1996) for

broad discussions about the policy). When incumbents are homogeneous, HJM show that as the

number of preemptive incumbents increases, the probability of a new entry rather increases. We

obtain a similar result, as a corollary to our results, by comparing PPRP equilibria with different

numbers of participating incumbents with an identical entry-loss rate; so limiting participation of

some incumbents is not desirable from the perspective of competitiveness.3 However, in leader-

follower PPRP equilibria of this paper, it is possible to increase the chance of entry by excluding

the leader in the auction. Thus, we identify conditions under which the affirmative action can be

effective.

This paper is also related to two strands in the auction literature: asymmetric auctions (Lebrun

(1999), Maskin and Riley (2000) and Kirkegaard (2012) among others) and auctions with exter-

nalities (see Jehiel and Moldovanu (2000, 2001)). We study asymmetric auctions with externalities

2In spite of controversy, the mixed strategy equilibrium concept has become widely accepted for a large number of

applications. Cheng and Zhu (1995) show that such anomalies can be traced back to von Neumann and Morgenstern’s

expected utility, but, still, it is the most common form of decision making under uncertainty.

3The same insight was provided also by Sharkey and Sibley (1993) with a number of firms in a Bertrand model.
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under complete information, but it is not difficult to see how incomplete information with different

valuation distributions can render analysis combining asymmetric auctions and externalities com-

plex.4 We suggest a tractable model under complete information that can embark on studying the

role of asymmetric incumbents in entry deterrence. This model can also be extended to consider

entry deterrence and litigation with asymmetric firms to generalize the homogeneity assumption

among firms; for instance, see a recent study by Choi and Gerlach (2018).

The model is introduced in Section 2, and preliminary definitions and facts are provided in

Section 3. Section 4 and 5 present the general results. Section 6 deals with a special case involving

a leader and many followers. We conclude with a few remarks in Section 7. Most proofs are

provided in the appendix.

2 Model

We consider an industry with multiple heterogeneous incumbents and potential entrants competing

for a new license, extending the framework by HJM. The license is sold by a regulatory agency

through a second price sealed-bid auction. Each incumbent can obtain extra value by adding the

license, whereas an entrant can enter the market by acquiring it. We assume complete information,

as in HJM.5

The set of incumbents is I ≡ {1, ..., n} with n ≥ 2. Each incumbent’s payoff differs depending

on whether a new entry occurs or not, when it loses in the auction. If another incumbent wins,

incumbent i earns πi(n), but if an entrant wins, it earns a lower payoff πi(n+1), that is, πi(n+1) <

πi(n), due to the downstream competition. If incumbent i wins, it earns wi. Every entrant earns

we if it wins the license and 0 otherwise.

Although we assume heterogeneous incumbents with differential payoff functions, regardless

of whoever wins the license, the “external” effect on the profitability of the other incumbents

is identical. More precisely, incumbent profits πi(n) do not depend on which incumbent wins

the license, which means that incumbents use the new license in a way that does not influence

comparative (dis)advantages among the incumbents in the current market. The new license is, for

example, used only to deter entry in the current market; it may be used to generate extra profit

in the other independent market. By this assumption, the entry-deterring effect of winning the

new license for an incumbent is separated from the effects on the profits of the incumbents. This

simplification facilitates our investigation into entry deterring incentives of incumbents and their

bidding behavior.

We assume that bidders do not use (weakly) dominated strategies in an equilibrium and that

when an incumbent ties with an entrant, the incumbent wins, but the standard tie-breaking applies

among incumbents.

4For instance, even for a standard second price auction, bidding a bidder’s own valuation is no longer dominant

with entry deterrence or other types of externality.

5For example, all incumbents and entrants in the model have occupied their positions long enough to know each

other well.
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3 Preliminaries

All entrants are willing to pay up to we to obtain the license, and under the second price sealed-bid

auction, bidding we is a dominant strategy for all entrants. Incumbent i’s willingness to pay for

the license depends on externalities in the downstream competition: she is willing to pay wi−πi(n)

to win it against another incumbent and wi − πi(n + 1) to win it against an entrant. We call the

former vi ≡ wi−πi(n) i’s intrinsic valuation, and the latter wi−πi(n+ 1) i’s preemptive valuation.

Using ∆πi ≡ πi(n) − πi(n + 1) > 0 (profit gain from entry deterrence), the preemptive valuation

can be written as vi + ∆πi and is greater than the intrinsic valuation. That is, each incumbent has

a greater willingness to pay to win the license against an entrant than against another incumbent.

With we being a dominant strategy for all entrants, we can focus on bid profiles of the incum-

bents b ≡ (bi)i∈I and define incumbent i’s payoff as a function of these bid profiles, ui : Rn+ → R+.

If an incumbent bids at least as much as we, i.e., maxj∈I bj ≥ we, each highest-bidding incumbent

i obtains the expected payoff

ui(b) =
1

k
[wi − max

j∈I\{i}
bj ] +

k − 1

k
πi(n),

where k is the number of incumbents that make the same highest bid, and all other incumbents

j ∈ I obtain

uj(b) = πj(n).

If no incumbent bids at least as much as we, that is, maxj∈I bj < we, then each incumbent i obtains

ui(b) = πi(n+ 1).

If there is an incumbent with intrinsic valuation above we, that is, we < maxi∈I vi, then this

incumbent will always bid at least as high as we, so entry never occurs at any Nash equilibrium.

On the other hand, if no incumbent has preemptive valuation at least as high as we, that is,

we > maxi∈I{vi + ∆πi}, then all incumbents will always bid below we and entry occurs for sure at

any Nash equilibrium. In what follows, we will consider the non-trivial environment satisfying

max
i∈I

vi < we < max
i∈I
{vi + ∆πi}, (1)

where no incumbent has innate incentive to bid at least as high as the entrants’ valuation we and

at least one incumbent is willing to deter an entry. Hence, the possibility of entry will not be

determined uniquely as in the other cases; it varies across numerous equilibria to be analyzed later.

We denote by H ≡ {j ∈ I : vj + ∆πj > we} the set of incumbents whose preemptive valuations

are greater than the entrants’ valuation. It can be shown that for each incumbent not belonging

to H, any bid weakly greater than we is weakly dominated. Hence, their strategies are irrelevant

in determining the outcome; hence, they may be reduced throughout our analysis.

Lemma 1. For each incumbent i /∈ H, bidding bi ≥ we is weakly dominated.

The proof of Lemma 1 and most proofs of subsequent results are provided in the appendix. If

|H| = 1, then the unique Nash equilibrium has the single incumbent in H bidding preemptively

(higher than or equal to we) and winning the license. Hence, the entry can be deterred with
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probability 1, as in Gilbert and Newbery (1982). In what follows, we consider the non-trivial case

|H| ≥ 2; that is, two or more incumbents have preemptive valuations greater than the entrants’

valuation. Denote by Bi the set of bid profiles where i bids at least as high as we and all others

bid less than we such that

Bi ≡ {b ∈ Rn+ : bi ≥ we and bj < we for all j 6= i}.

The complete set of pure strategy Nash equilibria is characterized by ∪i∈HBi.

Proposition 1. The set of all pure strategy Nash equilibria is given by ∪i∈HBi.

In all these pure strategy equilibria, the incumbent i ∈ H bidding preemptively (i.e., bi ≥ we)

obtains wi − we, and each of the other incumbents j ∈ H obtains πj(n); the former is lower

than the latter, i.e., wi − we < πi (n) by (1). Hence, the cost of entry deterrence is paid only by

the preemptive bidder and all the other incumbents free ride on it. Such extremely unequal cost

sharing is not qualified as a reasonable prediction of the game when other less unequal cost sharing

equilibria also exist. We search for these other equilibria where two or more incumbents share

the cost of entry deterrence. In all such equilibria, entry deterring incumbents necessarily adopt

“strictly mixed” strategies choosing an entry deterring bid with a probability less than 1, which

are referred to as randomized preemption.

4 Monotonic randomized preemption among heterogeneous in-

cumbents

This section formulates the entry deterrence within mixed-strategy equilibria in which at least two

incumbents make entry-deterring bids with positive probability. We call such a mixed-strategy

equilibrium a randomized preemption equilibrium. The two lemmas below help us simplify our

analysis significantly.

Incumbent i’s mixed strategy is a bid distribution σi over R+. The profile of mixed strategies

of i ∈ H is denoted by σ ≡ (σi)i∈H . We first show that in any randomized preemption equilibrium,

no entry-deterring incumbent chooses a deterring bid above we with positive probability.

Lemma 2. For any randomized preemption equilibrium σ, if i ∈ H is a bidder participating in

preemption, i never bids greater than we, that is, Prσi [bi > we] = 0.

Given πi(n) > wi −we, each incumbent will be better off if any of the other incumbents deters

the entry, implying that no incumbent has an incentive to put probability for a bid higher than we.

Hence, the only deterring bid for randomized preemption equilibria is we. In addition, we show

that non-deterring bids can also be reduced to a single bid since putting different distributions over

non-deterring bids is “irrelevant” in terms of payoffs.

Lemma 3. For all randomized preemption equilibrium σ, if σ′ is such that Prσi [bi = we] = Prσ
′
i [bi =

we] for all i ∈ H participating in preemption, then σ′ yields the same payoff to all bidders as σ.

The two lemmas provide simple representations of all randomized preemptive equilibria. A

binary preemptive mixed strategy for i ∈ H, which is a mixed strategy such that incumbent i chooses
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the deterring bid we with probability pi ∈ [0, 1) and a non-deterring bid bi < we with 1 − pi. As

such, a binary preemptive mixed strategy can be represented by pi, and its strategy profile by

p ≡ (pi)i∈H . By Lemmas 2 and 3, any randomized preemption equilibrium can be represented by

a profile of binary preemptive mixed strategies, which greatly simplifies our analysis.

For each i ∈ H, denote by Bi ≡ {we, bi} incumbent i’s set of two bids for her binary preemptive

mixed strategy. Let B−i ≡ B1 × · · · × Bi−1 × Bi+1 × · · · × B|H|; for each b ∈ ×j∈HBj , b−i ≡
(b1, . . . , bi−1, bi+1, . . . , b|H|); and

µ(b−i) ≡ |{j ∈ H \ {i} : bj = we}|

be the number of incumbents bidding we other than i. Let p−i ≡ (ph)h∈H\{i}. Given p−i, the

probability that incumbents choose b−i is

Pr[b−i; p−i] =
∏

j∈H\{i}:bj=we

pj ×
∏

j∈H\{i}:bj=bj

(1− pj).

Then, when b−i is chosen, the probability of i’s winning through bidding we equals Pr[b−i; p−i]/(µ(b−i)+

1) and i’s winning payoff is given by wi − we. The probability of i’s losing after bidding we equals

Pr[b−i; p−i]× µ(b−i)/(µ(b−i) + 1) and the payoff equals πi(n), since in this case no entrant can win

the license. Hence, incumbent i’s expected payoff from bidding we is

Ui(we; p−i) ≡
∑

b−i∈B−i

Pr[b−i; p−i]

(
1

µ(b−i) + 1
[wi − we] +

µ (b−i)

µ(b−i) + 1
πi (n)

)
. (2)

If, on the other hand, incumbent i bids an amount b̄i below we, the following two cases can arise.

When there is another incumbent bidding we, that is, µ(b−i) ≥ 1, there is no entry and incumbent

i’s payoff equals πi(n); and when all the other incumbents also bid below we, now with probability

Pr[b̄−i; p−i] = Πj∈H\{i} (1− pj), an entrant wins the license and thus incumbent i’s payoff equals

πi(n+ 1). Hence, incumbent i’s expected payoff from bidding bi < we is

Ui(bi; p−i) ≡
∑

b−i∈B−i:µ(b−i)≥1

Pr[b−i; p−i]πi (n) + Pr[b−i; p−i]πi (n+ 1) (3)

=
∑

b−i∈B−i

Pr[b−i; p−i]πi (n)− Pr[b−i; p−i]∆πi,

where the equality follows from adding and subtracting the same term Pr[b−i; p−i]πi (n) and by

∆πi ≡ πi(n) − πi(n + 1) > 0. Hence, incumbent i’s net benefit of choosing the deterring bid we
against the non-deterring bid b̄i, the difference between the above two payoffs (2) and (3), is

Ui(we; p−i)− Ui(bi; p−i) =
∑

b−i∈B−i

Pr[b−i; p−i]
1

µ(b−i) + 1
[wi − we − πi (n)] + Pr[b−i; p−i]∆πi, (4)

which can be rewritten as

Pr[b−i; p−i](vi − we)

 ∑
b−i∈B−i

Pr[b−i; p−i]

Pr[b−i; p−i]

(
1

µ(b−i) + 1

)
− ∆πi
we − vi

 . (5)
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Note that Pr[b−i; p−i]/Pr[b−i; p−i] is well-defined since p is such that pi < 1, for all i. Dividing i’s

profit loss from entry ∆πi by we − vi, we define incumbent i’s entry-loss rate, that is,

λi ≡
∆πi

we − vi
. (6)

Since for all i ∈ H, ∆πi > we − vi and we − vi > 0 from (1), λi > 1.

HJM assume homogeneous incumbents, that is, ∆πi = ∆πj = ∆π and vi = vj = v for all i 6= j,

which implies the identical entry-loss rate among all incumbents. However, the identical entry-loss

rate among incumbents does not necessarily imply homogeneous incumbents; clearly, λi = λj may

hold for different (vi,∆πi) and (vj ,∆πj). More importantly, we highlight the role of differential

entry-loss rates among incumbents and how this difference affects their incentive of preemptive

bidding.

For each i ∈ H, let xi ≡ pi
1−pi and x−i ≡ (xh)h∈H\{i}. Then pi > 0 if and only if xi > 0. The

first part in the bracket of (5) can be rewritten as∑
b−i∈B−i

Pr[b−i; p−i]

Pr[b−i; p−i]

(
1

µ(b−i) + 1

)
=

∑
b−i∈B−i

∏
j∈H\{i}:bj=we

xj

(
1

µ(b−i) + 1

)
.

Let

Φ(x−i) ≡
∑

b−i∈B−i

∏
h∈H\{i}:bh=we

xh

(
1

µ(b−i) + 1

)
. (7)

Note that for each i, j ∈ H,

Φ(x−i) = xj
∑

b−i∈B−i:bj=we

∏
h∈H\{i,j}:bh=we

xh

(
1

µ(b−i) + 1

)
(8)

+
∑

b−i∈B−i:bj=b̄j

∏
h∈H\{i,j}:bh=we

xh

(
1

µ(b−i) + 1

)

and ∑
b−i∈B−i:bj=we

∏
h∈H\{i,j}:bh=we

xh

(
1

µ(b−i) + 1

)
=

∑
b−j∈B−j :bi=we

∏
h∈H\{i,j}:bh=we

xh

(
1

µ(b−j) + 1

)
;

(9)∑
b−i∈B−i:bj=b̄j

∏
h∈H\{i,j}:bh=we

xh

(
1

µ(b−i) + 1

)
=

∑
b−j∈B−j :bi=b̄i

∏
h∈H\{i,j}:bh=we

xh

(
1

µ(b−j) + 1

)
.

(10)

Since we factor out vi−we < 0 for each i in (5), the net benefit of the deterring bid is positive,

i.e., Ui(we; p−i)− Ui(bi; p−i) > 0 if and only if

Φ(x−i) < λi, (11)

and the net benefit of the non-deterring bid (so free-riding) is positive if and only if

Φ(x−i) > λi. (12)
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Note that (11) shows that an incumbent with a greater entry-loss rate is more likely to choose the

deterring bid. Suppose that λi ≥ λj and the same probability of entry-deterrence at both x−i and

x−j , so Φ(x−i) = Φ(x−j). Then, whenever (11) holds for j, (11) also holds for i; but the converse

does not hold. That is, whenever j is willing to choose the deterring bid, i is also willing to do the

same, but the converse does not hold.

When (11) holds, it is optimal for incumbent i to choose the deterring bid (all the other incum-

bents bid an amount below we), which must not be a case at a randomized preemption equilibrium.

Hence, in order to incentivize randomized participation of two or more incumbents in entry deter-

rence, all incumbents are to be provided free-riding incentive, that is, x satisfies, for all i ∈ H,

Φ (x−i) ≥ λi. (13)

If the inequality holds strictly for incumbent i ∈ H, the incentive is too strong, so the incumbent free

rides fully and does not bid preemptively, pi = 0. Hence, any incumbent bidding preemptively with

pi > 0 must be given a balanced incentive, satisfying (13) with equality. Note that giving a balanced

incentive for an incumbent with a higher entry-loss rate is more costly for the other incumbents

since to make the left-hand side of (13) equal to her entry-loss rate, the other incumbents need to

engage in the preemptive bidding with greater probability.

If any profile of binary preemptive mixed strategies (p∗i )i∈H constitutes an equilibrium, then for

each i ∈ H, (13) holds and for each i ∈ H with p∗i > 0,

Φ
(
x∗−i
)

= λi. (14)

Using (8), (9) and (10), for any two incumbents i, j ∈ H with p∗i , p
∗
j > 0,

Φ(x∗−i)− Φ(x∗−j) = (x∗j − x∗i )
∑

b−i∈B−i:bj=we

∏
h∈H\{i,j}:bh=we

x∗h

(
1

µ(b−i) + 1

)
(15)

= λi − λj .

Hence, using (14) and (15), x∗j ≥ x∗i if and only if λi ≥ λj , that is, p∗j ≥ p∗i if and only if λi ≥ λj .

That is, incumbent i with a higher entry-loss rate bids less aggressively than incumbent j with a

lower entry-loss rate. Therefore, we obtain Proposition 2.

Proposition 2. Given any randomized preemption equilibrium represented by binary preemptive

mixed strategies (p∗i )i∈H , for any pair of incumbents i, j ∈ H who participate in preemptive bidding

(p∗i , p
∗
j > 0), p∗i ≥ (>) p∗j if and only if λi ≤ (<)λj .

To give an intuition, recall that in any randomized preemption equilibrium, any incumbent

participating in entry deterrence should be provided a balanced incentive of free-riding, namely,

indifference between preemptive bidding and free-riding, as stated by (14). Since an incumbent

with a higher entry-loss rate also has a greater incentive of preemption as explained earlier, to

make her indifferent between preemptive bidding and free-riding, the other incumbents needs to

give her enough incentive of free-riding, which is possible when they choose preemptive bidding

with sufficiently high probabilities according to (13). The higher the entry-loss rate, which is the
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right-hand side of (14), the greater the probabilities of preemptive bidding by the other participating

incumbents in the left-hand side of (14).6

5 Existence of equilibria with fully or partially participating ran-

domized preemption

We now investigate existence of equilibria with randomized preemption. Though we consider het-

erogeneous incumbents, most of our results in this section and the next are obtained under the

condition of bounded heterogeneity. For each λ0 > 0 and each δ > 0, a profile of entry-loss rates

λ ≡ (λi)i∈H with the mean entry-loss rate λ0 exhibits bounded heterogeneity below δ if the variance

of the entry-loss rates in λ is below δ. When a result holds for all λ with mean entry-loss rate λ0

under the condition of bounded heterogeneity below some δ > 0, we say the result holds for all

boundedly heterogeneous profiles of entry-loss rates with mean λ0 .

A fully participating randomized preemption equilibrium, or briefly FPRP equilibrium, is a

mixed strategy Nash equilibrium where every incumbent in H participates in entry deterrence with

a positive probability of preemptive bidding. For an identical entry-loss rate λ0, from (14), an

FPRP equilibrium exists if there is x∗0 such that x∗0 = xh for all h ∈ H and x∗0 is a solution of

Φ( x0, . . . , x0︸ ︷︷ ︸
|H|−1 elements

) = λ0. (16)

The existence of an FPRP equilibrium with non-identical entry-loss rates is guaranteed, as we state

in the next proposition, when there are only two incumbents in H or when the entry-loss rates of

all incumbents in H exhibit bounded heterogeneity.

Proposition 3. (i) If |H| = 2, then for all entry-loss rates λ1, λ2 of the two incumbents in H,

there exists a unique FPRP equilibrium.

(ii) Assume |H| ≥ 3. For all entry-loss rates λ0 and all boundedly heterogeneous profiles of

entry-loss rates with the mean λ0, there exists a unique FPRP equilibrium.

Note that in the two-incumbent case, no extra condition of bounded heterogeneity is needed for

the existence. When there are three or more incumbents in H, the existence is guaranteed under

the condition of bounded heterogeneity in entry-loss rates. If this condition is not satisfied (for

instance, incumbent i’s entry-loss rate λi is too high for the other incumbents to compensate it),

then an FPRP equilibrium may not exist, as shown by the following three-incumbent example.

Example 1. Let H ≡ {1, 2, 3} and consider the case Φ(·) in (8) is given by: for all a, b, Φ (a, b) =
1
3ab + 1

2a + 1
2b + 1. If there is an FPRP equilibrium, then at the equilibrium, (x1, x2, x3) satisfies

(14), that is, Φ (x2, x3) = λ1, Φ (x1, x3) = λ2, Φ (x1, x2) = λ3. The three equations imply that for

all i ∈ {1, 2, 3},

x∗i =
3− 12λi +

√
3(4λ1 − 1)(4λ2 − 1)(4λ3 − 1)

8λi − 2
.

Now suppose that λ1 = λ2 = 2 and λ3 = 5. Then x∗3 < 0, which shows that no FPRP exists.

6Note that the left-hand side of (14) is increasing in the probabilities of deterring bids by the other participating

incumbents.
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If the entry-loss rates of all incumbents in H are identical, then the FPRP equilibrium is

symmetric (all incumbents in H adopt an identical deterring probability). Moreover, as stated in

the next corollary, homogeneity of entry-loss rate is a necessary and sufficient condition for the

existence of a (unique) symmetric FPRP equilibrium.

Corollary 1. Assume |H| ≥ 3. A (unique) symmetric FPRP equilibrium exists if and only if the

entry-loss rates of all incumbents in H are identical.

This corollary follows directly from Propositions 2 and 3. The proposition and its corollary

generalize existence of symmetric FPRP equilibrium by HJM (Proposition 1 in HJM) in two re-

spects. First, homogeneity of the incumbents is not needed for existence of FPRP equilibrium.

We obtain the same existence result under the assumption of bounded heterogeneity of entry-loss

rates. Second, we identify a necessary and sufficient condition (homogeneous entry-loss rate) for

the existence of symmetric FPRP equilibrium.

We now turn to equilibria where not all incumbents in H participate in entry deterrence. A

partially participating randomized preemption (PPRP) equilibrium is a mixed strategy Nash equilib-

rium where two or more incumbents in H participate in entry deterrence with a positive probability

of preemptive bidding. When all these participating incumbents adopt the same probability of pre-

emptive bidding, the PPRP equilibrium is referred to as a symmetric PPRP equilibrium. It is

not fully symmetric, though, since participating and non-participating incumbents adopt different

strategies.

As for the FPRP equilibrium in Proposition 3, the existence of the PPRP equilibrium requires a

condition of bounded heterogeneity among the participating incumbents. To begin with, let S ⊆ H
be the set of the participating incumbents who have an identical entry-loss rate λ0. Under an

identical entry-loss rate of participating incumbents, Proposition 2 implies symmetry of the PPRP

equilibrium. Then, a symmetric PPRP equilibrium with this set S exists if (13) holds and for

all i ∈ S, (14) holds; that is, it is optimal for the other non-participating incumbents to choose

non-deterring bids and all participating incumbents i ∈ S choose x that makes them indifferent

between choosing the deterring bid and a non-deterring bid (free-riding) indifferent. Note that (14)

for the symmetric PPRP can be simplified as follows: for all i ∈ S,

|S|−1∑
k=0

1

k + 1

(
|S| − 1

k

)
xk = λ0. (17)

It can be shown that if i ∈ H\S has λi > λ0, then both (13) and (17) cannot be satisfied. Hence,

an additional condition on entry-loss rates of participating and non-participating incumbents is

needed to establish the existence of PPRP. It is that participating incumbents’ entry-loss rates are

not dominated by the entry-loss rate of a non-participating incumbent. Denote by λS a profile of

entry-loss rates of all incumbents in S. To establish the existence of a PPRP equilibrium under

the condition of bounded heterogeneity among participating incumbents, we must have a general

version of (17) with heterogeneous entry-loss rates from λS .

Proposition 4. (i) If |S| = 2 and arg maxi∈Hλi∩S 6= ∅, there exists a unique PPRP equilibrium

with the group of participating incumbents S.
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(ii) Assume |S| ≥ 3. For all λ0 and all boundedly heterogeneous profiles λS with the mean λ0, if

for all i ∈ H\S, λi ≤ max{λj : j ∈ S}, then there exists a PPRP equilibrium with the group

of participating incumbents S.

In both parts, we need extra conditions for the existence of a PPRP equilibrium. When |S| = 2,

at least one participating incumbent must have an entry-loss rate weakly greater than those of all

other non-deterring incumbents. When |S| ≥ 3, all participating incumbents must have entry-loss

rates with bounded heterogeneity and their maximum rate should not be lower than the entry-

loss rate of any non-participating incumbent. The next example shows that these conditions are

indispensible.

Example 2. The previous example can be extended to prove that the existence of Part 2 is not

guaranteed without the condition on entry-loss rates. Now, we show that the existence in Part 1

is not guaranteed without the condition on entry-loss rates in Part 1. We modify Example 1 and

let λ1 = λ2 = 2, and λ3 > 2. It follows from Proposition 4 that there are PPRP equilibria for

two incumbents including the highest entry-loss incumbent, S = {1, 3} and S′ = {2, 3}, but the

existence of an equilibrium without incumbent 3, S′′ = {1, 2}, is not guaranteed for a sufficiently

large λ3. To prove this, given λ1 = λ2 = 2, we have x∗1 = x∗2 = 2. Then, for incumbent 3 ,

Φ (x∗1, x
∗
2)−λ3 = 4

3 + 1 + 1 + 1−λ3. Hence, if λ3 > 13/3, then Φ (x∗1, x
∗
2)−λ3 < 0, so incumbent 3’s

net benefit of the deterring bid is positive, and it is optimal for her to choose a deterring bid with

probability 1, which means that a PPRP equilibrium with the set of deterring incumbents {1, 2}
does not exist.

If incumbents exhibit bounded heterogeneity, there exists a unique FPRP, as stated in Propo-

sition 3. However, there can still exist multiple PPRP equilibria; so no uniqueness is stated in

Proposition 4.

By examining a special case of Proposition 4 where all incumbents in H have an identical

entry-loss rate , we can obtain a corollary that is comparable to Proposition 2 by HJM.

Corollary 2. If λi = λ0 for each i ∈ H, then for each S ⊆ H, there exists a PPRP equilibrium

with the set of participating incumbents S. And as |S| ≤ |H| increases, the entry probability in

the PPRP with the group of participating incumbents S increases.

The corollary compares different PPRP equilibria in a model while HJM’s result compares

unique symmetric FPRP equilibria in “different models” with varying numbers of identical incum-

bents. This corollary says that the cost of free riding (probability of entry) increases as the number

of incumbents participating in preemptive bidding increases. Hence, there is a trade-off between

the efficiency of the entry deterrence and the fairness of the allocation of deterring cost among the

incumbents.

6 One leader and many followers

By Proposition 4, a PPRP equilibrium may not exist for more than two actively participating

incumbents if their entry-loss rates are too heterogeneous. We now consider a bipartite group case

where a PPRP equilibrium may exist without the bounded heterogeneity condition.
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Let S ⊆ H be the bipartite group consisting of a single “leader” and |S| − 1 “followers”. The

leader’s entry-loss rate is denoted by λl and the followers’ entry-loss rates are identical and denoted

by λf . Assume that all the other incumbents have an entry-loss rate lower than both λl and λf , that

is, for all j ∈ H\S, λj < min{λl, λf}. We call any PPRP equilibrium with the set of participating

incumbents S a leader-follower PPRP equilibrium.

To investigate existence and the nature of the leader-follower PPRP equilibrium, let xl ≡
pl

1−pl , and xf ≡
pf

1−pf , where pl is the leader’s probability of choosing the deterring bid and pf the

followers’. Then, by (13) and (14), a leader-follower PPRP equilibrium exists if each follower chooses

x∗f so that the leader is indifferent between making a deterring bid and making a non-deterring bid,

that is,
|S|−1∑
k=0

1

k + 1

(
|S| − 1

k

)
x∗f

k = λl; (18)

and given x∗f , the leader chooses x∗l so that each follower is indifferent between making a deterring

bid and making a non-deterring bid, that is,

x∗l

|S|−2∑
k=0

1

k + 2

(
|S| − 2

k

)
x∗f

k +

|S|−2∑
k=0

1

k + 1

(
|S| − 2

k

)
x∗f

k = λf ; (19)

and finally all the other incumbents optimally choose zero entry deterring probability. We now

state our result on existence of PPRP equilibrium.

Proposition 5. Let S be a set of a single leader with entry-loss rate λl and followers with entry-loss

rate λf .

(i) If λl < λf , then there exists a leader-follower PPRP equilibrium. In all these PPRP, the

leader bids more aggressively, that is, 0 < p∗f < p∗l .

(ii) If λl > λf , then there may not exist a leader-follower PPRP equilibrium; if any, the followers

bid more aggressively than the leader, p∗f > p∗l > 0.

In case (i), we do not need an additional condition, the bounded heterogeneity condition of

Proposition 4 to obtain equilibrium existence; a solution for simultaneous equations, (18) and (19)

exists in case (i). However, in case (ii), a solution may not exist. This is because when λl is

too large, x∗f of (18) also increases too high so that x∗l of (19) must be negative, which is not an

admissible value for probability ratio x∗l . Nevertheless, in addition, if λl and λf are sufficiently

close, by Proposition 4, a leader-follower PPRP equilibrium in case (ii) exists. We will show in

Sections 6.1 and 6.2 when the two cases arise using concrete examples of Cournot and Stackelberg

competitions.

Note that this result applies when all the other incumbents outside S have lower entry-loss rates

than λl and λf . Without this assumption, the existence result is not guaranteed.

We now give a numerical example of the leader-follower PPRP equilibrium in Proposition 5.

Example 3. Example 1 can be reframed for this section. Let S be now a subset of H, where

S = {1, 2, 3}, and each j ∈ H\S has an entry-loss rate lower than all from S. Suppose that
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incumbent 1 and 2 are followers and incumbent 3 is the leader. Then, from (18), we have

|S|−1∑
k=0

1

k + 1

(
|S| − 1

k

)
x∗f

k = 1 + x∗f +
1

3
x∗f

2 = λl,

which yields x∗f =
−3+
√

3(4λl−1)

2 ; and from (19),

x∗l

|S|−2∑
k=0

1

k + 2

(
|S| − 2

k

)
x∗f

k +

|S|−2∑
k=0

1

k + 1

(
|S| − 2

k

)
x∗f

k = x∗l

(
1

2
+

1

3
x∗f

)
+

(
1 +

1

2
x∗f

)
= λf ,

which can be rewritten as x∗l = x∗f +
−4(1+x∗f+ 1

3
x∗f

2)+4λf

(2+ 4
3
x∗f)

= x∗f +
−4(λl−λf )

(2+ 4
3
x∗f)

= −3
2 +

(4λf−1)
√

3(4λl−1)

2(4λl−1) ,

where the last equality follows from 2 + 4
3x
∗
f = 2(4λl−1)√

3(4λl−1)
. One can confirm that this solution is

consistent with the one from Example 1.

6.1 Cournot Competition

Consider an industry with one leader and n − 1 followers. These n incumbent firms choose their

quantities of output independently to maximize their profits under the linear market demand

p(Q) = a − bQ. Assume that the leader has a constant marginal cost cl and each follower also

has a common constant marginal cost cf such that a > ci > 0 for all i = l, f , and b > 0.

In this industry, a regulatory agency seeks to sell a new license to an incumbent or an entrant.

If an incumbent wins the license, the winning firm can earn extra profit or reduce its fixed cost,

which is represented by her intrinsic valuation vl = wl − πl(n) and vf = wf − πf (n).7 If an entrant

wins the license, she enters the Cournot competition with the same cost function as the follower.

We solve two Cournot models, one without entry and the other with entry. Then, the profit

gains from entry deterrence of the leader and a follower, ∆πl and ∆πf are given by

∆πl =
(a− ncl + (n− 1)cf )2

b(n+ 1)2
−

(a− (n+ 1)cl + ncf )2

b(n+ 2)2
,

∆πf =
(a− 2cf + cl)

2

b(n+ 1)2
−

(a− 2cf + cl)
2

b(n+ 2)2
.

In addition, the entrant’s payoff we is given by

we =
(a− 2cf + cl)

2

b(n+ 2)2
.

The leader’s entry-loss rate λl = ∆πl
we−vl and the (incumbent) follower’s entry-loss rate λf =

∆πf
we−vf

are both greater than 1 and the intrinsic valuation is positive, as required in Section 3, if parameter

a is chosen suitably.

Denote further ∆l,fc ≡ cl − cf and ∆l,fv ≡ vl − vf to identify conditions under which the

first or the second case of Proposition 5 holds. Fix cf and vf . Then, we may write cl and vl

7Specifically, we can let the extra margin the incumbent leader (or a follower) gains from winning a license be

dl > 0 (or df > 0, respectively). By construction, the leader’s intrinsic valuation is vl = wl − πl(n) = dl and each

follower’s is vf = wf − πf (n) = df .
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as cl = cf + ∆l,fc and vl = vf + ∆l,fv . The difference in the two entry-loss rates, λl − λf , is

strictly decreasing in ∆l,fc and is strictly increasing in ∆l,fv at ∆l,fc = 0 and ∆l,fv = 0, if a is

large enough. Furthermore, the difference is strictly increasing in ∆l,fv but is not monotonic with

respect to changes in ∆l,fc due to the square terms in the formulas for λl and λf , that is, ∆πl and

∆πf as well as we. Hence, both cases (i) and (ii) in Proposition 5 can arise by increasing either

∆l,fc or ∆l,fv. For example, if ∆l,fc = 0, any positive value ∆l,fv yields a higher entry-loss rate for

the leader, i.e., λl > λf , but any negative value ∆l,fv yields a lower entry-loss rate for the leader,

i.e., λl < λf .

Assuming cf = vf = 1, the locus of two parameters cl and vl satisfying λl = λf is given by

a curve in Figure 1-(a). Parameter values above (or below) the curve give λl > λf (or λl < λf ,

respectively); hence, the leader bids less (or more) aggressively than the followers.

6.2 Stackelberg Competition

Now, we suppose that the leader moves first, in addition to the difference in their benefits from

winning a license and costs as assumed in Section 6.1. By solving the Stackelberg competition with

or without entry, it can be readily shown that the profit gains from entry deterrence of the leader

and the followers, ∆πl and ∆πf are given by

∆πl =
(a− ncl + (n− 1)cf )2

4bn
−

(a− (n+ 1)cl + ncf )2

4b(n+ 1)
,

∆πf =
(a− (n+ 1)cf + ncl)

2

4bn2
−

(a− (n+ 2)cf + (n+ 1)cl)
2

4b(n+ 1)2
.

In addition, the entrant’s payoff we is given by

we =
(a− (n+ 2)cf + (n+ 1)cl)

2

4b(n+ 1)2
.
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We can choose a so that both entry-loss rates of the leader and the followers, λl = ∆πl
we−vl and

λf =
∆πf
we−vf are greater than 1 and the intrinsic valuation is positive.

The difference between the Cournot model and the Stackelberg model is that in the latter, even

with ∆l,fc = 0 and ∆l,fv = 0, the difference in the two entry-loss rates, λl−λf , is positive, because

of the first mover’s advantage in the Stackelberg competition. Hence, Case (ii) of Proposition 5

(λl > λf ) is more likely to arise than in the Cournot competition. For example, if ∆l,fc = 0, any

value of ∆l,fv greater than or equal to a negative lower bound yields a higher entry-loss rate for the

leader (λl > λf ), so case (ii) of Proposition 5 holds. And any value of ∆l,fv lower than the negative

lower bound yields a lower entry-loss rate for the leader (λl < λf ), so case (i) of Proposition 5

holds.

Assuming cf = vf = 1, the locus of two parameters cl and vl satisfying λl = λf is given by a

curve in Figure 1-(b). Parameter values above (or below, respectively) the curve give λl > λf (or

λl < λf ); hence the leader bids less (or more) aggressively than the followers.

6.3 Policy implications

In designing a license auction, policy makers often consider limiting participation of some incum-

bents, in particular, market leaders in order to reduce the competitive disadvantage of the followers

or entrants in the downstream industry. In this subsection, we consider the leader-follower model

in Section 6 and evaluate the policy of excluding the leader in the license auction. In the model

with identical incumbents by HJM, excluding an incumbent always leads to a lower probability

of entry; so either exclusion of all incumbents or none is desired. Our model with heterogeneous

incumbents leads to more diverse possibilities; the policy of excluding the leader may be desirable

in some situations such that excluding the leader leads to a higher probability of entry.

Suppose a regulatory agency considers the policy to exclude the leader for the purpose of

increasing entry probability, which enhances competition in the downstream. Without the leader,

there are |S| − 1 incumbent followers, and the probability of choosing the deterring bid, denoted

by p̂f , satisfies the equilibrium condition like (17) but with only |S|− 1 incumbents. By a binomial

expansion as in proof of Corollary 2, the formula can be rewritten as

(1 + x̂f )(|S|−1) − 1

x̂f (|S| − 1)
= λf , (20)

where x̂f ≡
p̂f

1−p̂f . If the regulatory agency executes the policy of limiting the leader’s participation,

the entry probability can be rewritten in terms of x̂f by

(1− p̂f )|S|−1 =
1

(1 + x̂f )|S|−1
. (21)

Without such regulatory intervention, a leader-follower PPRP equilibrium (p∗l , p
∗
f ) satisfies the two

conditions (18) and (19). As we show in the proof of Proposition 6, the two conditions can be

rewritten as
(1 + x∗f )|S| − 1

x∗f |S|
= λl, (22)
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and

x∗l

[
(1 + x∗f )|S|−1

x∗f (|S| − 1)
−

(1 + x∗f )|S| − 1

(x∗f )2|S|(|S| − 1)

]
+

(1 + x∗f )(|S|−1) − 1

x∗f (|S| − 1)
= λf , (23)

where x∗i ≡ p∗i /(1− p∗i ) for i = l, f . The entry probability is given by

(1− p∗l )(1− p∗f )|S|−1 =
1

(1 + x∗l )(1 + x∗f )|S|−1
. (24)

We identify conditions under which this entry probability is higher than that of the leader-follower

PPRP equilibrium analyzed earlier.

Proposition 6. Let S be a set of a single leader with entry-loss rate λl and followers with identical

entry-loss rate λf .

(i) If a leader-follower PPRP equilibrium exists and satisfies λlx
∗
l + λf (|S| − 1)(x∗f − x̂f ) < 0,

then limiting the leader’s participation decreases the entry probability.

(ii) If a leader-follower PPRP equilibrium exists and satisfies λlx
∗
l + λf (|S| − 1)(x∗f − x̂f ) > 0 or

a leader-follower PPRP equilibrium does not exist with a sufficiently large λl, then limiting

the leader’s participation increases the entry probability.

Even when there is no leader-follower PPRP with the set S due to the leader’s entry-loss rate

being sufficiently higher than each follower’s based on Proposition 5 (ii), there can be a leader-

follower PPRP with a subset of S. In this case, with the leader, if λl is sufficiently large, the entry

probability is lower than that from limiting the leader’s participation. On the other hand, without

the leader, the remaining incumbents are identical, i.e., followers, so by Proposition 4, there exists

a symmetric PPRP with them. Unlike Corollary 3, Proposition 6 demonstrates that the bidder

asymmetry plays a key role in deriving policy implications.

Example 4. Consider the three-incumbent case of Example 3. It is possible to find the entry

probability in a closed form, which is given by

1(
−1

2 +
√

3
2

√
4λl − 1

)2 (
−1

2 +
√

3
2

(4λf−1)√
4λl−1

) .
When there are only two followers, excluding the leader, we obtain the entry probability as

1

(2λf − 1)2
.

The closed form solution enables us to strengthen the results of Proposition 6, without additional

conditions, such that if there is a leader-follower PPRP equilibrium with the set S, limiting the

leader’s participation decreases the entry probability, whereas if there is no leader-follower PPRP

equilibrium with the set S, limiting the leader’s participation increases the entry probability. It

can be readily shown that for a fixed follower’s entry-loss rate λf , the entry probability without

excluding the leader is greater than that with excluding the leader if the leader’s entry-loss rate λl is

lower than a threshold, and moreover, it is strictly decreasing in λl. More interestingly, however, if

the leader’s entry-loss rate λl is higher than the threshold λ†l in Figure 2, there is no leader-follower
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PPRP equilibrium with two followers, and the entry probability with the leader and one follower

is lower than that with limiting the leader’s participation. If λf = 2, the threshold is given as

λ†l = 13
3 . The comparison is described in Figure 2.

7 Concluding remarks

We study the model of single-license auctions with heterogeneous incumbents. We establish the

monotonicity of preemptive bidding participation with regard to the entry-loss rate. We also estab-

lish the existence of equilibria with full or partial participation of entry deterrence by heterogeneous

incumbents.

Considering a model with a bipartite set of a single leader and multiple followers (in Cournot or

Stackelberg competitions), we discuss conditions for equilibrium existence and policy implications.

Depending on certain conditions, limiting the leader’s participation can diminish or improve market

efficiency and competitiveness. This suggests a general lesson for set-aside policies as well as other

competition policies limiting leading incumbents: assessment of these policies depend crucially on

the structure of the market and incumbent heterogeneity.

The existence of equilibria with randomized preemption is not guaranteed when the bounded

heterogenity condition does not hold, as shown by counterexamples. Nevertheless, we leave it

for future investigation to characterize all randomized preemption equilibria with or without the

condition we provide here.

Appendix: Proofs

Proof. [Proof of Lemma 1] Let i ∈ I\H and bi ≥ we. Then vi + ∆πi ≤ we ≤ bi. Equivalently,

wi − πi (n+ 1) ≤ we ≤ bi. In what follows, we show that for all b−i and all b′i ≤ we, ui (bi, b−i) ≤
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ui(b
′
i, b−i).

Case 1. Consider b−i such that there is an incumbent other than i who bids at least we,

that is, max {bj : j 6= i} ≥ we. Suppose bi ≥ max {bj : j 6= i}. If i wins, then ui(bi, b−i) = wi −
max {bj : j 6= i} ≤ wi − we; otherwise, ui(bi, b−i) = πi (n). If i bids b′i < we, then, since another

incumbent deters the entry given b−i, i’s payoff is πi (n). Since wi − we ≤ πi (n+ 1) ≤ πi (n) (the

first inequality holds for i ∈ I\H) and i has a positive chance of winning given (bi, b−i), the payoff

from bidding b′i, πi (n), is greater than or equal to the payoff from bidding bi, which is a “strict

mixture” of wi −max {bj : j 6= i} (≤ wi − we) and πi (n). Suppose bi < max {bj : j 6= i}. Then, i’s

payoff is πi (n), which is the same as bidding b′i < we.

Case 2. Consider b−i such that all other incumbents bid less than we, that is, max {bj : j 6= i} <
we. Then, ui(bi, b−i) = wi −we. If i bids b′i < we, an entrant will win the license, and ui(b

′
i, b−i) =

πi (n+ 1). Since i ∈ I\H, wi−we ≤ πi (n+ 1), so bidding b′i yields a payoff that is greater than or

equal to the payoff from bidding bi.

Proof. [Proof of Proposition 1] We first show that each b ∈ Rn+\ ∪i∈H Bi is not an equilibrium.

By Lemma 1, for i ∈ I\H, bidding bi ≥ we is weakly dominated. Let each i ∈ H bid bi < we.

Then for j ∈ H, uj (bj , b−j) = πj (n+ 1), but by bidding b′j ≥ we, uj(b
′
j , b−j) = wj − we. Since

we < vj + ∆πj , uj(b
′
j , b−j) > uj (bj , b−j). Let i, j ∈ H bid bi ≥ we and bj ≥ we, respectively.

Then ui (bi, b−i) ≤ wi − we, but by bidding b′i < we, ui (b′i, b−i) = πi (n). Since we > maxi∈I vi,

ui (b′i, b−i) > ui (bi, b−i). Next, we show that for all i ∈ H, each b ∈ Bi is a pure strategy Nash

equilibrium. Let i ∈ H and b ∈ Bi. Then ui(bi, b−i) = wi − we > πi (n+ 1) = ui (b′i, b−i) for any

b′i < we since we < vi + ∆πi, and ui(bi, b−i) = wi − we = ui (b′i, b−i) for any b′i ≥ we with b′i 6= bi.

Let j 6= i. Then uj(bj , b−j) = πj (n) > wj − we ≥ uj(b
′
j , b−j) for any b′j ≥ bi since we > maxi∈I vi,

and uj(bj , b−j) = πj (n) = uj(b
′
j , b−j) for any b′j < bi.

Proof. [Proof of Lemma 2] Suppose by contradiction that Prσi [bi > we] > 0. Then, either (i) for

some h ∈ H, Prσ[bh > maxj∈H\{h} bj ≥ we] > 0, or (ii) there is b̂ > we such that for each i ∈ H
participating in preemption, Prσi [bi = b̂] + Prσi [bi < we] = 1 (that is, each participating incumbent

in H chooses the same deterring bid b̂ above we or a losing bid below we).

Case 1. For some h ∈ H, Prσ[bh > maxj∈H\{h} bj ≥ we] > 0. Let σ′h be a mixed strategy that

is obtained by lowering all bids higher than we given σh to we, i.e., Prσ
′
h [bh = we] = Prσh [bh ≥ we]

and for all b′h < we, Prσ
′
h [bh ≤ b′h] = Prσh [bh ≤ b′h]. Let B∗ ≡ {b : bh > maxj∈H\{h} bj ≥ we}. For

each b ∈ B∗, by switching from σh to σ′h, h’s payoff strictly increases from uh(b) ≤ wh−we to πh(n)

or α(wh −we) + (1− α)πh(n) for some α = 1
2 ,

1
3 , ...,

1
n−1 . For each b ∈ B\B∗, by switching from σh

to σ′h, h’s payoff either increases or remains the same. Since Prσ[B∗] > 0, h’s expected payoff from

σ′h is greater than h’s expected payoff from σh, contradicting σ being a Nash equilibrium.

Case 2. There is b̂ > we such that for each i ∈ H participating in preemption, Prσi [bi =

b̂] + Prσi [bi < we] = 1. Pick any h ∈ H with Prσh [bh = b̂] > 0. Define σ′h as in Case 1. Let

B̂ ≡ {b : bh = b̂ = maxj∈H\{h} bj}. Then, after switching from σh to σ′h, for any b ∈ B̂, h’s payoff

strictly increases from α(wh − we) + (1 − α)πh(n) for some α = 1
2 ,

1
3 , ...,

1
n−1 to πi(n), and for all

other b ∈ B\B̂, h’s payoff either increases or remains the same. Hence, h’s expected payoff from

σ′h is greater than h’s expected payoff from σh, contradicting σ being a Nash equilibrium.
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Proof. [Proof of Lemma 3] Let any pair σi, σ
′
i be such that Prσi [bi = we] = Prσ

′
i [bi = we] for

all bidders participating in preemption. For each S ⊆ H, let Pr[S] be the probability that all

incumbents in S bid we, and all the other incumbents in H\S bid an amount less than we. That

is,

Pr[S] ≡
∏
j∈S

pj ×
∏

j∈H\S

(1− pj) .

Then, for all i ∈ H, incumbent i’s expected payoff from bidding we is given as

Ui(we; p−i) ≡
∑

S∈H\{i}

Pr[S]

(
1

|S|+ 1
[wi − we] +

|S|
|S|+ 1

πi (n)

)
.

On the other hand, for all i ∈ H, incumbent i’s expected payoff from bidding bi < we is given as

Ui(bi; p−i) ≡
∑

S∈H\{i}:S 6=φ

Pr[b−i]πi (n) + Pr[φ]πi (n+ 1) .

Since Prσh [bh = we] = Prσ
′
h [bh = we] = ph, for both mixed strategies σh and σ′h, bidder j obtains

the same expected payoff as

Prσh [bj = we]Uj(we; p−i) + Prσh [bj < we]Uj(bj ; p−i) for all j and all (σj)j 6=h .

This implies that for each h ∈ H, such σh and σ′h are payoff-equivalent. Hence, given i ∈ H and

σ−i, (σi, σ−i) is a binary preemptive Nash equilibrium if and only if (σ′i, σ−i) is a binary preemptive

Nash equilibrium. By repeating it for all j 6= i, (σi, σ−i) is a binary preemptive Nash equilibrium

if and only if
(
σ′i, σ

′
−i
)

is a binary preemptive Nash equilibrium.

Proof. [Proof of Proposition 3] Part 1. |H| = 2. We prove the existence of a unique solution of

(14) which gives (p∗1, p
∗
2) >> 0. Note that (14) is composed of two equations below:

Φ (x−1) = λ1 ⇔
1

2
x2 + 1 = λ1; Φ (x−2) = λ2 ⇔

1

2
x1 + 1 = λ2.

The unique solution is given by x∗1 = 2(λ2 − 1) and x∗2 = 2(λ1 − 1). Since (λ1, λ2) >> (1, 1),

(x∗1, x
∗
2) >> 0, which provides the unique FPRP equilibrium.

Part 2. |H| ≥ 3. Let H ≡ {1, . . . , |H|}. Assume that all incumbents in H have identical

entry-loss rate λ0. If there is an FPRP (xh)h∈H , then by Proposition 2 and (14), there is x∗0 such

that x∗0 = xh for all h ∈ H and x∗0 is a solution of ,

Φ (x0, . . . , x0)︸ ︷︷ ︸
|H|−1 times

= λ0. (25)

Note that Φ (x0, ..., x0)−λ0 takes a negative value at x0 = 0, and it is continuous, strictly increasing

and unbounded above. Hence, there exists a unique x∗0 > 0 such that Φ (x∗0, ..., x
∗
0) = λ0. Let
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x∗ ≡ (x∗0, . . . , x
∗
0) and λ∗ ≡ (λ0, . . . , λ0).For each i ∈ H, each λ ≡ (λi)i∈H , and x ≡ (xi)i∈H , let

Fi(λ, x) ≡ Φ(x−i)− λi and F (λ, x) ≡ (Fi(λ, x))i∈H . Note that

DxF (λ, x) =


0 ∂Φ(x−1)

∂x2
· · · ∂Φ(x−1)

∂x|H|
∂Φ(x−2)
∂x1

0 · · · ∂Φ(x−2)
∂x|H|

...
...

. . .
...

∂Φ(x−|H|)

∂x1

∂Φ(x−|H|)

∂x2
· · · 0

 ,

and for all i, j ∈ H, ∂Φ(x∗−i)/∂xi = ∂Φ(x∗−j)/∂xj = c. Then

DxF (λ∗, x∗) = c


0 1 · · · 1

1 0 · · · 1
...

...
. . .

...

1 1 · · · 0

 .
Then using (25) and applying Implicit Function Theorem for F (λ, x) at (λ∗, x∗), there is an open

set U ⊆ RH+ containing λ∗ ∈ U and a unique continuously differentiable function g : U → RH+ such

that for all λ ∈ U , F (λ, g(λ)) = 0.

Proof. [Proof of Proposition 4] Part 1. Assume |S| = 2 and maxi∈H λi ∈ S. Let h ∈ arg maxi∈Hλi
and S ≡ {h, g}. From the proof of Proposition 3, there exist strictly mixed strategies (x∗h, x

∗
g) of

two incumbents in S such that

1

2
x∗h + 1 = λg, and

1

2
x∗g + 1 = λh. (26)

For all i ∈ H\S, let x∗i ≡ 0. It is optimal for i to choose a non-deterring bid with probability 1

(x∗i = 0) if (13) holds. Note that

Φ(x∗−i)− λi =
1

3
x∗hx

∗
g +

1

2
x∗h +

1

2
x∗g + 1− λi

=
1

3
x∗hx

∗
g +

1

2
x∗h + λh − λi,

where the second equality follows from (26). Since λh − λi ≥ 0, we have Φ(x∗−i) − λi > 0. Hence

s(13) holds. The uniqueness part follows from the uniqueness of the solution for (26).

Part 2. Let S ⊆ H. Suppose that all incumbents in S have an identical entry-loss rate λ0.

Consider λ∗ such that for all i ∈ S, λ∗i = λ0 and for all j ∈ H\S, λ∗j ≤ λ0.

A profile of binary preemptive mixed strategies p∗ is a symmetric PPRP equilibrium with the

set of participating incumbents S if (i) for all i ∈ H\S, p∗i = 0, (ii) there is p∗0 > 0 such that for all

i ∈ S, p∗i = p∗0 and x∗i ≡ p∗0/(1− p∗0) and (iii) p∗ satisfies both (13) and (14).

Note that when all incumbents in S choose identical p0 and x0 = p0/(1 − p0), (14) can be

rewritten as follows:
|S|−1∑
k=0

1

k + 1

(
|S| − 1

k

)
xk0 = λ0. (27)
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Existence of x∗0 satisfying (27) is straightforward. Let p∗0 be given by x∗0 = p∗0/(1 − p∗0). For all

i ∈ S, let x∗h ≡ x∗0 and p∗i ≡ p∗0 and for all i ∈ H\S, let x∗i ≡ 0 and p∗i ≡ 0. Then p∗ satisfies (14).

We show that p∗ is a symmetric PPRP equilibrium with the group of participating incumbents S.

We have only to show that p∗ satisfies (13), which establishes that it is optimal for the incumbents

in H\S to choose non-deterring bids. Let i ∈ H \ S. Since x∗i = 0,

Φ(x∗−i)− λi =

|S|∑
k=0

1

k + 1

(
|S|
k

)
x∗0
k − λ∗i

=

|S|∑
k=0

1

k + 1

(
|S|
k

)
x∗0
k −

|S|−1∑
k=0

1

k + 1

(
|S| − 1

k

)
x∗0
k

+

|S|−1∑
k=0

1

k + 1

(
|S| − 1

k

)
x∗0
k − λ∗i

=

 |S|∑
k=0

1

k + 1

(
|S|
k

)
x∗0
k −

|S|−1∑
k=0

1

k + 1

(
|S| − 1

k

)
x∗0
k

+ λ0 − λ∗i ,

where the third equality follows from (27). Since the difference inside of the bracket is positive and

and by assumption λ0 − λ∗i ≥ 0, we have Φ(x∗−i)− λ∗i > 0, which shows (13).

Finally using the symmetric PPRP equilibrium and applying Implicit Function Theorem as in

the proof of Proposition 3, we prove the rest of the proposition. For all xS ∈ RS+, all λS ∈ RS+,

and all i ∈ S, let Fi(λS , xS) ≡ Φ(xS\{i}, 0H\S) − λi and F (λS , xS) ≡ (Fi(λS , xS))i∈S . Using

x∗corresponding to the above symmetric PPRP equilibrium p∗ with the set of participating incum-

bents S, F (λ∗S , x
∗
S) = 0. Now applying Implicit Function Theorem as in the proof of Proposition 3,

there is an open set U ⊆ RS+ containing λ∗S = (λ0, . . . , λ0) and a unique continuously differentiable

function g : U → RS+ such that for all λS ∈ U , F (λS , g(λS)) = 0. Let λ be such that λS ∈ U and for

all i ∈ H\S, λi ≤ max{λj : j ∈ S}. Define a profile x̂ as x̂S ≡ g(λS) and for all i ∈ H\S, x̂i ≡ 0.

Then for all i ∈ S, Fi(λS , x̂S) = 0, which means Φ(xS\{i}, 0H\S)− λi = 0. Hence (27) holds for all

i ∈ S. We now show that (13) holds for all i ∈ H\S. Let i ∈ H\S. By assumption, there is j ∈ S
be such that λj ≥ λi. Since x̂i = 0,

Φ(x̂−i)− λi =
∑

b−i∈B−i

∏
h∈H\{i}:bh=we

x̂h

(
1

µ(b−i) + 1

)
− λi

=
∑
b∈B

∏
h∈H:bh=we

x̂h

(
1

µ(b) + 1

)
− λi.
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Note that ∑
b∈B

∏
h∈H:bh=we

x̂h

(
1

µ(b) + 1

)
=

∑
b∈B:bj=we

x̂j
∏

h∈H\{j}:bh=we

x̂h

(
1

µ(b) + 1

)

+
∑

b∈B:bj=b̄j

∏
h∈H\{j}:bh=we

x̂h

(
1

µ(b) + 1

)

=
∑

b∈B:bj=we

x̂j
∏

h∈H\{j}:bh=we

x̂h

(
1

µ(b) + 1

)

+
∑
b−j∈B

∏
h∈H\{j}:bh=we

x̂h

(
1

µ(b−j) + 1

)

=
∑

b∈B:bj=we

x̂j
∏

h∈H\{j}:bh=we

x̂h

(
1

µ(b) + 1

)
+ Φ(x̂−j).

Using this, we rewrite

Φ(x̂−i)− λi =
∑

b∈B:bj=we

x̂j
∏

h∈H\{j}:bh=we

x̂h

(
1

µ(b) + 1

)
+ Φ(x̂−j)− λi.

Since Φ(x̂−j) = λj , x̂j > 0, and λj ≥ λi, Φ(x̂−i)− λi > 0.

Proof. [Proof of Corollary 2]By a binomial expansion, (17) can be rewritten as

(1 + x)(|S|−1) − 1

x(|S| − 1)
= λ0 ⇔ (1 + x)(|S|−1) − 1− λ0x(|S| − 1) = 0, (28)

where x is a function of |S|.8 On the other hand, the entry probability of the PPRP is written as

(1− p)|S|−1 =
1

(1 + x)|S|−1
.

To consider changes in the entry probability with respect to changes in |S| explicitly, denote x(|S|).
The derivative of (1 + x)|S|−1 with respect to |S| then yields

d(1 + x(|S|))|S|−1

d|S|
=(|S| − 1)(1 + x(|S|))|S|−2dx(|S|)

d|S|
+ log(1 + x(|S|))(1 + x(|S|))|S|−1

=− (|S| − 1)(1 + x(|S|))|S|−2 log(1 + x(|S|))(1 + x(|S|))|S|−1 − λ0x(|S|)
(|S| − 1)(1 + x(|S|))|S|−2 − λ0(|S| − 1)

+ log(1 + x(|S|))(1 + x(|S|))|S|−1

=λ0(|S| − 1)(1 + x(|S|))|S|−2

[
− log(1 + x(|S|))(1 + x(|S|) + x(|S|)

(|S| − 1)(1 + x(|S|))|S|−2 − λ0(|S| − 1)

]
< 0,

8As in HJM, it is convenient to utilize a binomial expansion
∑|S|−2

k=0

(
|S| − 2

k

)
zk = (1 + z)|S|−2, and take

integrals of both sides.
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where dx(|S|)
d|S| can be derived implicitly from (28). We obtain the negative sign since − log(1 +

x(|S|))(1+x(|S|)+x(|S|) is equal to zero for x(|S|) = 0, and strictly decreasing for all x(|S|) ≥ 0.

Proof. [Proof of Proposition 5] First, examine case (i): λf > λl. By the monotonicity result of

Proposition 2, x∗l > x∗f , and (18) implies that x∗f > 0, so x∗l > x∗f > 0. It remains to show that

the other incumbents optimally choose a non-deterring bid with probability 1. The payoff of each

j ∈ H\S y

x∗l

|S|−1∑
k=0

1

k + 2

(
|S| − 1

k

)
x∗f

k +

|S|−1∑
k=0

1

k + 1

(
|S| − 1

k

)
x∗f

k − λj

= x∗l

|S|−1∑
k=0

1

k + 2

(
|S| − 1

k

)
x∗f

k + λl − λj ,

where the the equality follows from (18). Since the first term must be positive, and λl − λj > 0,

we have Φ(x∗−j) − λj > 0, implying that each incumbent j ∈ H\S chooses the deterring bid with

zero probability.

However, for case (ii), λl > λf , the monotonicity result of Proposition 2 implies x∗f > x∗l ,

and furthermore, for a sufficiently great λl, we have a corresponding high value of x∗f from (18),

which can produce a negative value of x∗l from (19). Hence, in this case, the existence of a PPRP

equilibrium is not guaranteed.

Proof. [Proof of Proposition 6]

Part 1. By integrating both sides of a binomial expansion
∑|S|−1

k=0

(
|S| − 1

k

)
zk = (1 + z)|S|−1

, we obtain

|S|−1∑
k=0

(
|S| − 1

k

)
1

k + 1
zk+1 =

(1 + z)|S| − 1

|S|
.

Hence we obtain (22) from (18).Similarly, by integrating both sides of a modification of a

binomial expansion
∑|S|−2

k=0

(
|S| − 2

k

)
zk+1 = z(1 + z)|S|−2, we have

|S|−2∑
k=0

(
|S| − 2

k

)
1

k + 2
zk+2 =

z(1 + z)|S|−1

|S| − 1
−
∫ z

0

1

|S| − 1
(1 + t)|S|−1dt

=
z(1 + z)|S|−1

|S| − 1
− (1 + z)|S| − 1

|S|(|S| − 1)
.

The first term in the left-hand side of (19) can be rewritten as

x∗l

|S|−2∑
k=0

1

k + 2

(
|S| − 2

k

)
x∗f

k =
x∗l
x∗f

|S|−2∑
k=0

1

k + 2

(
|S| − 2

k

)
x∗f

k+1.
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Hence, applying the previous binomian expansion, we get

|S|−2∑
k=0

1

k + 2

(
|S| − 2

k

)
x∗f

k+1 =
(1 + x∗f )|S|−1

|S| − 1
−

(1 + x∗f )|S| − 1

x∗f |S|(|S| − 1)
,

which leads to

x∗l
x∗f

|S|−2∑
k=0

1

k + 2

(
|S| − 2

k

)
x∗f

k+1 =
x∗l
x∗f

[
(1 + x∗f )|S|−1

|S| − 1
−

(1 + x∗f )|S| − 1

x∗f |S|(|S| − 1)

]

= x∗l

[
(1 + x∗f )|S|−1

x∗f (|S| − 1)
−

(1 + x∗f )|S| − 1

(x∗f )2|S|(|S| − 1)

]
.

The second term of the left-hand side of (19) can be rewritten as in the left-hand side of (22).

Together, we get (23).

Using (22), (23) can be written as folllow:

x∗l

[
(1 + x∗f )|S|−1

x∗f (|S| − 1)
−

(1 + x∗f )|S| − 1

(x∗f )2|S|(|S| − 1)

]
+

(1 + x∗f )(|S|−1) − 1

x∗f (|S| − 1)
= λf ,

⇔(1 + x∗l )(1 + x∗f )|S|−1 −
x∗l [(1 + x∗f )|S| − 1]

x∗f |S|
= 1 + λfx

∗
f (|S| − 1),

⇔(1 + x∗l )(1 + x∗f )|S|−1 − λlx∗l = 1 + λfx
∗
f (|S| − 1),

which leads to

(1 + x∗l )(1 + x∗f )|S|−1 = λlx
∗
l + 1 + λfx

∗
f (|S| − 1).

The difference in the entry probabilities of the symmetric equilibrium excluding the leader and the

leader-follower equilibrium, namely the difference between (21) and (24) is given by

(1 + x∗l )(1 + x∗f )|S|−1 − (1 + x̂f )|S|−1 = λlx
∗
l + λfx

∗
f (|S| − 1)− λf x̂f (|S| − 1)

= λlx
∗
l + λf (|S| − 1)(x∗f − x̂f ).

Therefore, λlx
∗
l + λf (|S| − 1)(x∗f − x̂f ) < 0 (or > 0) implies that exclusion of the leader increases

(or decreases, respectively) the entry probability.

Part 2. If a leader-follower PPRP equilibrium with the set S does not exists, there exists a

leader-follower PPRP equilibrium with a subset of S. At least one PPRP with the leader exists

with one follower by Proposition 4 (i). Fix λf . Then, for any PPRP with a subset Ŝ of S, there

exists a correspoding λl value such that the entry probability from limiting the leader is higher

than the PPRP if the leader’s probability x∗l is equal to zero. In this case, from (19) or (23), each

follower’s x∗f is identical to that of a symmetric equilibrium case with Ŝ. From Corollary 2, we

know that the entry probability from limiting the leader is higher than this PPRP with x∗l = 0.

A PPRP equilibrium (x∗l , x
∗
f ) is a solution of simultaneous equations with (22) and (23). Con-

sider a Jacobian matrix from the simultaneous equations such that
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
0

∂

[
(1+x∗f )|S|−1

x∗
f
|S|

]
∂xf

(1+x∗f )|S|−1

x∗f (|S|−1) −
(1+x∗f )|S|−1

(x∗f )2|S|(|S|−1)

∂

{
x∗l

[
(1+x∗f )|S|−1

x∗
f
(|S|−1)

−
(1+x∗f )|S|−1

(x∗
f
)2|S|(|S|−1)

]
+

(1+x∗f )(|S|−1)−1

x∗
f
(|S|−1)

}
∂xf

 ,
where

∂

[
(1+x∗f )|S|−1

x∗f |S|

]
∂xf

=
(1 + x∗f )|S|−1x∗f |S| − [(1 + x∗f )|S| − 1]

(x∗f )2
> 0,

since the numerator is zero if x∗f = 0 and its derivative (|S| − 1)(1 + x∗f )|S|−2x∗f |S| is positive for all

x∗f ≥ 0. On the other hand,
(1+x∗f )|S|−1

x∗f (|S|−1) −
(1+x∗f )|S|−1

(x∗f )2|S|(|S|−1)
> 0 for x∗f ≥ 0 because it is from the first

term (19). Thus, the determinant of the matrix is negative. By Implicit Function Theorem, this

dominance still holds for other PPRP equilibria with a neighborhood of λl due to continuity.
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