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Abstract

We distinguish between the goods and services sectors in an unobserved components
model of U.S. inflation. We find that prior to the early 1990s, both sectors contributed
to volatility of aggregate trend inflation, while since then, this has been predominantly
driven by the services sector, with the trend in goods inflation being essentially flat.
We document that the large reduction in the volatility of the trend for goods inflation
has been the most important driver of the decline in the volatility in aggregate trend
inflation reported by Stock and Watson (2007). Our results appear robust to COVID-
19 inflation developments.
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1 Introduction

A key objective of monetary policy is managing trend (or the long-run path of) inflation (see,

e.g., Mishkin, 2007; Draghi, 2015). For example, in addition to headline inflation, the Federal

Reserve monitors measures of inflation that exclude food and energy prices. This strategy is

based on the belief that food and energy inflation is largely transitory and, consequently, of

less immediate concern for monetary policy. In a prominent contribution, Stock and Watson

(2007) show that the main change in U.S. inflation dynamics from the Great Inflation period

compared to the post-1990s period is a considerable drop in the volatility of trend inflation.

More specifically, while trend inflation was volatile during the 1970s, it has become markedly

stable since the mid-1980s (and especially since the 1990s). While Stock andWatson’s finding

is a widely accepted description of aggregate trend inflation dynamics, it remains an open

question of how much sectoral forces contribute to their narrative on the decline in trend

inflation volatility.

Our main contribution is to shed light on the role of the goods and services sectors as

sources of aggregate trend inflation volatility for the U.S. economy. At the same time, the

COVID-19 pandemic has sparked interest in understanding sector-specific repercussions on

inflation, especially in light of a large increase in goods inflation. Our key finding is the

following: we find that variation in aggregate trend inflation has been entirely dominated

by trend services inflation since the 1990s.1 Our key result is a direct manifestation of the

change in the goods sector, where its variation used to be partly permanent, but is now

almost entirely dominated by transitory components. We note that these results are robust

in the context of a sample that accounts for observations up to 2021Q4; hence, they include

inflation developments related to the COVID-19 pandemic.2 That said, it should be noted

that the results for the pandemic period are interpreted with a larger degree of estimation

uncertainty.

Methodologically, we develop a two-sector unobserved components model with stochastic

volatility (Two-Sector UC-SV, hereafter) that features time-varying correlation between

1Throughout this paper we use the terms volatility and variation interchangeably.
2At the time of writing, it is not clear whether, and if so when, the COVID-19 pandemic ended. Therefore,

when we mention the pandemic period, we refer to the period from 2020 until the end of our sample in 2021.
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goods and services. Our approach is built directly from Stock and Watson’s (2007) univariate

unobserved components model with stochastic volatility, or univariate UC-SV. We also

consider a multi-sector UC-SV factor model like Stock and Watson (2016) as an alternative

to our baseline Two-Sector UC-SV. While we largely leave details of the multi-sector UC-

SV factor model to the Online Appendix, we highlight a key difference between the two

approaches is with regards to the modeling of comovement across sectors. Our approach

relies on time-varying correlations while the multi-sector UC-SV factor model relies on time-

varying loadings on a common trend. In the two-sector case we consider, our approach is a

more parsimonious choice. Nevertheless, we show that the general conclusions of the paper

are insensitive even when employing the multi-sector UC-SV factor model.

We relate our work to two specific strands of the literature on modeling inflation dynamics.

First, like several contributions in the trend inflation literature (see, e.g., Chan et al., 2013;

Mertens, 2016; Stock and Watson, 2016; Chan et al., 2018; Hwu and Kim, 2019), Stock and

Watson (2007) represents a basic building block for our work. At a high level, these studies

all mainly aim to sharpen trend inflation estimates in terms of in-sample and out-of-sample

(i.e., forecasting) fits relative to the original univariate UC-SV framework. However, our

objective is somewhat different. While building on the same modeling framework, our goal

is not so much to improve the model fit, but instead to provide a better understanding of the

sources of variation in trend inflation through the lens of the goods and services sectors. In

addition, like Stock and Watson (2007), we similarly decompose inflation into a permanent

and a transitory component in our Two-Sector UC-SV model. The permanent component is

then labeled “trend inflation.” Consequently, our approach is conceptually a removal-of-noise

exercise used to obtain a signal about underlying and, ultimately, future inflation.3

3Anecdotally, this is the interpretation of trend inflation within policy circles. For example, in the minutes
of the Federal Open Market Committee held on June 17-18, 2014, James Bullard asks, “If inflation comes
in at 1.9 percent and we’ve got underlying inflation at 1.75 percent, then should I say that we’ve got above-
normal or above-trend inflation, or am I supposed to compare it with 2 percent, which is the Committee’s
official target?” To which Jeremy Rudd replied, “In our judgment, you should be comparing it with 1.75
percent. We think 1 3

4 percent is the underlying rate of inflation.” We also acknowledge work that interprets
trend inflation as a time-varying inflation target (e.g., Kozicki and Tinsley, 2001; Ireland, 2007; Cogley et al.,
2010; Coibion and Gorodnichenko, 2011; Ascari and Sbordone, 2014) or optimal inflation rate (Adam and
Weber, 2019). While our work is explicitly set up as a removal-of-noise exercise, it is conceptually related
to the aforementioned broad area of work since the persistent component of inflation is ultimately linked to
inflation expectations and the effectiveness of monetary policy.
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Second, the goods and services dichotomy has been used to frame inflation in terms of

imported and domestic components (see Baldwin, 2022). In particular, services inflation is

often hypothesized as having a much tighter link to domestic economic slack, and possibly

cyclically sensitive (see, e.g., Tallman and Zaman, 2017; Stock and Watson, 2020; Borio

et al., 2021). In contrast, goods inflation is typically discussed in terms of imported inflation

(see, e.g., Clark, 2004; Linder et al., 2013) with China’s growing role in the consumer goods

market over the last 30 years, spurring a strand of work exploring how and whether inflation

has become increasingly globalized (see, e.g., Kamin et al., 2006; Borio and Filardo, 2007;

Bianchi and Civelli, 2015; Kamber and Wong, 2020). From this perspective, our approach of

adopting the goods and services dichotomy also serves as a natural broad split to understand

domestic and imported inflation.4 At the same time, the shift in consumer spending patterns

that followed government policies to contain the spread of COVID-19 has placed the goods

and services split at the forefront of the current debate on inflation dynamics.5

The remainder of this paper proceeds as follows: Section 2 describes the Two-Sector

UC-SV model. Section 3 presents the results from our model. Section 4 extends our analysis

to considering other approaches. Section 5 concludes.

2 A Two-Sector UC-SV Model

We begin by describing our Two-Sector UC-SV model. We decompose goods inflation (πG
t )

and services inflation (πS
t ) into their corresponding sector-specific permanent (τGt , τSt ) and

transitory noise (ζGt , ζSt ) components.6 Formally, we have:

πG
t = τGt + ζGt , (1)

πS
t = τSt + ζSt , (2)

4We also relate to work which attempts to understand how important relative price changes are to
understanding aggregate inflation (see Reis and Watson, 2010; Ahn and Luciani, 2021).

5For example, see the April 18, 2020 edition of The Economist, “COVID-19 could lead to the return of
inflation - eventually”.

6We specify the transitory components as noise to keep our model specification as close as possible to that
of Stock and Watson (2007), which helps with comparing relative to existing approaches. In Section A2.2 of
the Online Appendix, we explore different specifications for the transitory component, such as allowing for
some persistence, and discuss why our choice specification is still the preferred one.
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where trends are modeled as driftless random walk processes:

τGt = τGt−1 + uτG

t , (3)

τSt = τSt−1 + uτS

t . (4)

The driftless random walk is a common modeling strategy in the trend inflation literature.7

The driftless random walk assumption implies that the long-horizon forecasts of πG
t and πS

t

are, respectively, τGt and τSt , which is consistent with the Beveridge and Nelson (1981) (BN)

decomposition. The BN decomposition defines the trend component of time series as its long-

horizon forecast based on information at time t, for each sector i, or, τ it = limh→∞ Et

[
πi
t+h

]
.

The BN decomposition is a convenient link to trend inflation work that constructs trend

inflation by appealing to the BN decomposition under different modeling frameworks (e.g.,

Cogley et al., 2010; Kamber and Wong, 2020), but does not necessarily involve UC models.

Next, to allow for changes in the (conditional) volatility and correlation of the innovations

uτ i

t and ζ it for i = G, S, we specify the following covariance structure:

 (uτG

t , uτS

t )′

(ζGt , ζSt )
′

 ∼ N

 02×1

02×1

  Ωτ,t 02×2

02×2 Ωζ,t

 , (5)

where a triangular (or LDL) factorization of Ωτ,t and Ωζ,t yields:

Ωj,t =

σ2
jG,t σj,t

σj,t σ2
jS ,t

 =

 1 0

γj
t 1

exp(hjG

t

)
0

0 exp
(
hjS

t

)
1 γj

t

0 1

 for j ∈ {τ, ζ} . (6)

Therefore, in addition to sector-specific trends, we introduce six new state variables,

(γτ
t , γ

ζ
t , h

τG

t , hτS

t , hζG

t , hζS

t ), to accommodate changes in the correlation between, and volatility

of goods and services inflation.8

7See Stock and Watson (2007) and works that build directly on theirs (e.g., Mertens, 2016; Chan et al.,
2018, etc.). Shephard (2015) generalizes the random-walk assumption to martingale UC models.

8It is straightforward to see that time-varying correlation estimates, ρjt , can be backed out from
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Equations (5) and (6) embed much of the mechanism that drives our key results. Our

goal is to examine the role of the goods and services sectors as sources of aggregate trend

inflation volatility. Time-varying volatility in uτG

t and uτS

t accommodates the possibility

that these sectors may become more (or less) relevant to understand overall trend volatility

over time. Next, note from Equation (6), we define Ωτ,t as a full, rather than a diagonal,

matrix. Such a parameterization allows for the possibility that variation in aggregate trend

inflation reflects common dynamics between the goods and services sectors instead of relying

exclusively on sector-specific volatilities. Moreover, time-varying correlation between uτG

t

and uτS

t accommodates the possibility that these common dynamics might be more (or less)

salient during different episodes. Finally, to avoid over-attributing changes in inflation second

moments to its trend component, we parameterize the covariance matrix for the noise term

(Ωζ,t) in a similar fashion as we do for Ωτ,t.
9

For completeness, we present the law of motion for the remaining state variables:

hji

t = hji

t−1 + uhji

t , j ∈ {τ, ζ} , i ∈ {G,S} , (7)

γj
t = γj

t−1 + uγj

t , j ∈ {τ, ζ} , (8)

 (uhτG

t , uhτS

t , uhζG

t , uhζS

t )′

(uγτ

t , uγζ

t )′

 ∼ N

 04×1

02×1

  Ωh 04×2

02×4 Ωγ

 , (9)

where

Ωh = diag
(
σ2
hζG , σ2

hζS , σ2
hτG , σ2

hτS

)
and Ωγ = diag

(
σ2
γζ , σ2

γτ

)
. (10)

Equation (6) by computing ρjt =
γj
t exp

(
hjG

t

)
{
exp

(
hjG

t

)[
γj2

t exp
(
hjG

t

)
+exp

(
hjS

t

)]}0.5 for j ∈ {τ, ζ} .
9Following Stock and Watson (2007), we assume that inflation’s permanent and transitory components

are orthogonal, which is reflected in the block exogeneity assumption in Equation (5). Another possibility is
to allow for correlations between the innovations driving the trends and the noise (within and across sectors).
We leave this for future research, but note that Uzeda (2022) examines a related issue in the context of a
univariate UC-SV model, and finds that a trend-noise correlation leads to measures of trend inflation that
are similar to (survey-based) short-run inflation expectations. In contrast, the usual orthogonal trend-noise
assumption leads to measures of trend inflation that are more in line with (survey-based) long-run inflation
expectations; hence, it is closer to our interpretation of trend inflation in this study.
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Equations (1)-(10) describe a bivariate state space model, with the measurement and state

equations given by Equations (1)-(2) and (3)-(10), respectively. Aggregate trend inflation,

τt, can be approximately calculated as a weighted average of sector-specific trends:

τt ≈ ωG,tτ
G
t + ωS,tτ

S
t , (11)

where ωG,t and ωS,t are the expenditure weights of goods and services, respectively, and

ωG
t + ωS

t = 1. These weights are not estimated; they denote nominal expenditure shares out

of the total (nominal) personal consumption expenditures (PCE).10

2.1 Data and Estimation

Both goods and services inflation are constructed from seasonally adjusted deflators, as they

are subcomponents of the U.S. PCE. Our data are from the FRED databank.11 We annualize

the first difference of the logarithms of the deflators to obtain the goods and services inflation

rates. Our sample is for the period 1959Q1 to 2021Q4, i.e., T = 258 observations. The last 2

years at the end of the sample coincide with the COVID-19 pandemic and associated events

such as global supply-chain disruptions as well as large unprecedented fiscal and monetary

stimuli.

As our Two-Sector UC-SV model is a nonlinear state space model, we conduct the

estimations using a Bayesian approach, as is common.12 The states are estimated using

precision sampling techniques as described in Chan and Jeliazkov (2009). In particular, the

(log) volatility states (i.e., hτG

t , hτS

t , hζG

t , and hζS

t ) are estimated by combining a precision

sampler with the auxiliary mixture sampling method of Omori et al. (2007).

10 Our aggregation approach follows Stock and Watson (2016). Moreover, Whelan (2002) shows that the
Fisher index approach can be approximated by the Tornqvist formula, for which the weights at time t are
given by the average of the nominal shares in periods t and t − 1. The changes in nominal PCE shares
quarter-on-quarter are very small (the average change in the weight for services has a mean of less than
0.001 with a standard deviation of 0.003), implying there is very little to no cost in ignoring these changes
in weights.

11The FRED mnemonics for the goods and services deflators are DGDSRD3Q086SBEA and
DSERRD3Q086SBEA, respectively. If we require the PCE deflator, for example, when we estimate the
univariate UC-SV model, we use DPCERD3Q086SBEA. The FRED mnemonics for nominal expenditures
for goods and services are DGDSRC1 and PCESV, respectively. We construct the weights as the nominal
expenditure for goods or services divided by the total nominal expenditure for goods and services.

12A detailed description of the posterior sampling algorithm can be found in Section A1 of the Online
Appendix.
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Priors

There are three blocks of model parameters in our baseline Two-Sector UC-SV model to

which priors are assigned. These blocks are the covariance matrices in Equation (10), i.e.,

Ωh = diag
(
σ2
hζG

, σ2
hζS

, σ2
hτG , σ2

hτS

)
and Ωγ = diag

(
σ2
γζ , σ2

γτ

)
, and the state initialization

conditions collected as z0 =
(
τG0 τS0 hζ

0

G
hζ
0

S
hτ
0
G hτ

0
S γζ

0 γτ
0

)′
. We assume mutually independent

priors for each parameter in these three blocks.

More precisely, we adopt an inverse-gamma prior for each (conditional) variance term

in Ωh and Ωγ, i.e., σ2
hℓi

∼ IG
(
νhℓi , Shℓi

)
and σ2

γℓ ∼ IG
(
νγℓ , Sγℓ

)
, for ℓ ∈ {ζ, τ } and

i ∈ {G,S}, where we set νhℓi = νγℓ = T
10

and Shℓi = Sγℓ = 0.22(νhℓi − 1). The last expression

implies Eσ2
hℓi

= Eσ2
γℓ = 0.22. In other words, we assume that the conditional variance for

the states that govern second moments in our model are, on average, equivalent a priori.

However, our priors are diffuse, as reflected in the calibration of the shape hyperparameters

νhℓi = νγℓ = T
10
.13 Lastly, we assume a diffuse Gaussian prior for the initial conditions, i.e.,

z0 ∼ N (ẑ0,Σz0), where ẑ0 =
(
πG
1 , πS

1 , 0, · · · , 0
)′

and Σz0 = 100× I8.

We note that our priors are comparable to those used in the extant trend inflation

literature. The choice of hyperparameter calibration described above is guided by empirical

research on U.S. inflation that relies on a similar modeling framework (e.g., Stock and

Watson, 2007; Mertens, 2016; Stock and Watson, 2016; Chan et al., 2018). We also conduct

a number of prior sensitivity checks to assess the robustness of our results. In particular, we

allow for alternative prior calibrations and also change the class of prior distribution, which

we report in Section A2.1 of the Online Appendix. We stress, however, that our key findings

carry over to all prior sensitivity checks we conduct.

3 Results

We first present and discuss the estimates of both aggregate and sector-specific trend inflation

before moving on to our key finding about the sources of variation in aggregate trend inflation.

13See, e.g., Kroese and Chan (2014), chapter 11 for details on the parametrization of the inverse gamma
distribution which we adopt.
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3.1 Sectoral and Aggregate Trend Inflation Estimates from a Two-

Sector UC-SV

Figure 1: Estimated Aggregate Trend Inflation with a 67% Credible Interval
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Estimated Aggregate Trend Inflation (Posterior Median)

Notes: Headline inflation is the annualized quarter-on-quarter PCE inflation. The shaded areas denote
NBER recession dates.

Figure 1 plots the (smoothed) estimates of aggregate trend inflation from the Two-Sector

UC-SV model, together with PCE inflation. We report the posterior median as well as the

67% credible interval of our trend estimate. Overall, our trend inflation estimate broadly

mimics the history of postwar U.S. inflation. In particular, trend inflation peaked during the

Great Inflation in the 1970s, and began to disinflate in the early to mid-1980s. While there

have been episodes of large swings in quarter-on-quarter headline inflation since the 1990s,

trend inflation has remained low and stable.

Towards the end of our sample, our point estimates suggest that trend inflation has been
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rising, albeit modestly, since the beginning of the COVID-19 pandemic and sits slightly above

two percent. We do, however, document a widening of the posterior credible interval towards

the end of the sample. Since the sudden shift in inflation dynamics occurs at the end of the

sample, it is less certain whether such a shift implies the early stages of a permanent change in

inflation or a more transitory phenomenon, and is accordingly reflected in a greater degree of

estimation uncertainty towards the end of the sample. Correspondingly, the credible interval

of the estimated level of trend inflation at the end of the sample is between 1-4%, which

is reasonably large. It is known that smoothed estimates have less estimation uncertainty

relative to filtered estimates and that the smoothed and filtered estimate are equivalent for

the final sample point. Nonetheless, the large degree of estimation uncertainty associated

with the pandemic at the end of the sample is not just due to the presentation of smoothed

estimates. Even if one only focused on filtered estimates, the width of the credible interval

in 2021Q4 (the final sample point) is the largest it has been throughout the sample and

is more than twice the average width of the filtered credible interval for the entire sample.

Therefore, the wide credible interval at the end of the sample is not an issue of presenting

smoothed, rather than filtered, estimates, but reflects estimation uncertainty that inherently

stems from the inflation data associated with the pandemic.

Turning to our sector-specific results, Figure 2 presents the posterior median estimates

and 67% credible interval of our sector-specific trends, together with the annualized quarter-

on-quarter inflation in the goods and service sectors. Notably, estimates of sector-specific

trend inflation are quite different when comparing their dynamics during the 1970s and

early 1980s against the period from the mid-1980s onwards. In particular, during the 1970s

both trend services and trend goods inflation are roughly equivalent to actual goods and

services inflation, respectively. In contrast, the second half of our sample shows marked

differences in the dynamics of sector-specific trend inflation. More precisely, while there

has been a large degree of high frequency fluctuation in goods inflation since the 1990s, the

sector-specific trend is essentially flat and features almost no variation. In contrast, trend

services inflation has continued to closely track services inflation. We also observe that, akin

to the aggregate case, sector-specific trends have been rising modestly since the onset of

the COVID-19 pandemic. The relative lack of variation in trend goods inflation since the
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Figure 2: Estimated Sectoral-Specific Trend Inflation

Goods Inflation

1960 1970 1980 1990 2000 2010 2020

-20

-10

0

10

P
er

ce
nt

Services Inflation

1960 1970 1980 1990 2000 2010 2020

0

5

10

15

P
er

ce
nt

Sector-Specific Inflation Rate
Estimated Sector-Specific Trend (Posterior Median)

Notes: The solid lines are sector-specific annualized quarter-on-quarter inflation rates and the dotted lines
represent our posterior median estimate of the sector-specific trend with its associated 67% credible interval.
The shaded areas denote NBER recession dates.

1990s, despite goods inflation remaining extremely volatile, manifests in various guises and

is a recurring theme as we report the results from our model.

The associated 67% credible interval suggests that our sector-specific trends are fairly

precisely estimated throughout most of the sample, although we note (again) that the

posterior bands become relatively wider towards the end of the sample. On a related note,

due to the noisier nature of goods inflation, especially since the 1990s, trend detection may

be intrinsically more challenging, which may manifest in wider posterior credible bands for

trend goods inflation relative to its services counterpart. We find that the average width of

the associated 95%, 67%, and 50% posterior credible intervals is approximately 20% wider

for trend goods inflation (relative to services) over the whole sample. Therefore, we conclude
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that while trend detection may be more challenging for goods relative to services inflation,

it is not by a substantially large margin.

3.2 Sources of Variation in Aggregate Trend Inflation

We now turn to understanding the sources of variation in aggregate trend inflation. By

expanding on Equation (11), the variance of aggregate trend inflation, conditional on information

up to t-1 from the Two-Sector UC-SV model can be written as:14

var(τt|t−1) ≈ ω2
G,tvar(u

τG

t ) + ω2
S,tvar(u

τS

t ) + 2ωG,tωS,tCov(uτG

t , uτS

t ). (12)

Equation (12) shows that the Two-Sector UC-SV model naturally implies a simple

decomposition where the conditional variance of aggregate trend inflation can be approximately

decomposed into three components: the variances of the innovations to the goods and services

sectors, and a covariance term that accounts for the comovement between the two sectors.

Figure 3 presents the decomposition of the estimated variance of aggregate trend inflation

into the three components implied by Equation (12), which we denote as Goods, Services,

and Covariance. The overall volatility has a hump-shaped pattern, as per the narrative by

Stock and Watson (2007) (see also Cecchetti et al., 2007; Eo, 2016). All three components

contributed to the total variance of aggregate trend inflation before the 1990s and especially

so during the Great Inflation in the 1970s. However, since the 1990s, the goods and covariance

components no longer contribute significantly to the variation in aggregate trend inflation.

In other words, over the past three decades, the volatility of aggregate trend inflation has

been driven (almost) exclusively by the services sector. Figure 3 also provides a context

for why our estimates of trend inflation have only risen modestly during the COVID-19

pandemic presented in Figure 1. Because a large proportion of the increase in inflation

during the COVID-19 pandemic has been associated with the disruption of global supply-

chains, manifesting primarily as a surge in the prices of goods, our model interprets this rise

in inflation as mostly characterized by transitory variation.

14Note that because trend inflation is a random walk, the (asymptotic) unconditional variance is not
defined. Thus, when we mention the variance of trend inflation throughout the paper, we are, in fact,
referring to its conditional variance.

12



Figure 3: Decomposition of Volatility of Aggregate Trend Inflation

1960 1970 1980 1990 2000 2010 2020
0

0.5

1

1.5
Goods
Services
Covariance

Notes: Trend inflation is in units of annualized quarter-on-quarter inflation. Goods, services, and covariance
refer to the decomposition components of aggregate trend inflation, as presented in Equation (12). The
shaded areas denote NBER recession dates.

Table 1 focuses on the overall volatility of trend inflation and sectoral contributions

associated with Figure 3 for three selected periods, namely, 1975Q1, 2019Q4, and 2021Q4.

We choose 1975Q1 as it coincides with the estimated peak in aggregate trend inflation

volatility and 2019Q4 because it is the last pre-pandemic data point. Given the impact of

the pandemic-related inflation surge towards the end of the sample, we also report results

for 2021Q4 to provide some perspective on the effect the inflation surge has on estimates

near the end of the sample. Panel (a) reports the relative contributions using the posterior

median and 67% credible interval based on the estimates for each term in Equation (12).

We note that the estimation uncertainty did increase with the COVID-19 period where the

credible interval for the sectoral contributions in 2021Q4 relative to 2019Q4 are about 15%

wider for services and the covariance term, and almost 40% larger for goods. Nevertheless,
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Table 1: Decomposition of aggregate trend inflation volatility for selected periods

(a) Sectoral contributions (%)
Goods Services Covariance

1975Q1 49.3 16.9 33.8
[35.7, 70.2] [11.9, 26.2] [13.7, 42.3]

2019Q4 4.0 92.7 3.5
[1.5, 13.4] [71.3, 106.3] [-13.2, 20.0]

2021Q4 5.0 90.1 4.9
[1.7, 18.2] [65.8 106.3] [-16.0, 22.9]

(b) Role of trend goods volatility in reducing aggregate volatility
Aggregate volatility Counterfactual volatility Share accounted for

1975Q1 1.450
2019Q4 0.154 0.331 86%
2021Q4 0.158 0.332 86%

Notes: Panel (a): We report aggregate volatility and sectoral contributions based on Equation (12). All
estimates denote the posterior median and their associated 67% credible interval (squared brackets) for the
three selected periods (1975Q1 for the highest volatility period; 2019Q4 for the pre-COVID-19 period; 2021Q4
for the COVID-19 pandemic period). Sectoral contributions are measured as a percentage of aggregate
volatility in the three selected periods. Note that while the sum of the contributions must equal 100%, the
contribution of the covariance can be negative given the possibility of a negative covariance (i.e., a negative
correlation), and subsequently, the sum of the goods and services contribution to sum over 100% to offset
the negative contribution. Panel (b): Counterfactual volatility is the volatility of aggregate trend inflation
if trend goods volatility is at its 2019Q4 or 2021Q4 levels, but keeping everything else constant. The final
column represents the the percentage reduction in aggregate volatility that can be accounted for by just the
fall in trend goods volatility.

even allowing for estimation uncertainty, our general conclusion about the dominance of

trend services inflation still holds.

In panel (b) of Table 1, we calculate the counterfactual aggregate trend inflation volatility

where only the volatility of trend goods inflation fell to 2019Q4 or 2021Q4 levels, but

everything else stayed at 1975Q1 levels. We find that from 1975Q1 to 2019Q4, aggregate

volatility, which fell from 1.450 to 0.154, would still have fallen to 0.331, implying that the

decline in the volatility of trend goods inflation can account for 86% of the total reduction

in the volatility of aggregate trend inflation. We note that this conclusion holds when

considering 2021Q4 and allowing for any rise of trend good volatility associated with COVID-

19. Put differently, our results suggest that the decrease in overall trend inflation volatility

documented by Stock and Watson (2007) is largely driven by a sharp drop in the volatility

of trend inflation for goods. Such a decline, in turn, underlies the flat dynamics for trend
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goods inflation since the 1990s as shown in Figure 2.

Figure 4: Estimates of Time-Varying Second Moments for Trend Innovations
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Notes: All (posterior median) estimates are plotted with their associated 67% posterior credible intervals.
The shaded areas denote NBER recession dates.

For completeness, Figure 4 presents the estimated time-varying second-moments associated

with trend inflation in each sector and the time-varying standard deviation of aggregate

trend inflation.15 Because the decomposition in Equation (12) is mechanically driven by

the volatility of sector-specific trends and the correlation of trend innovations between both

sectors, it is not surprising that the bottom panels in Figure 4 reiterate our findings in

Figure 3. In other words, the standard deviation of the innovations to trend goods and

services inflation (i.e., std(uτG

t ) and std(uτS

t ) in Equations (3) and (4)) exhibit the same

hump-shaped pattern in Figure 3, although this pattern is much sharper and pronounced in

15Section A3 of the Online Appendix reproduces corresponding analysis for the transitory components.
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the goods sector. Similarly, correlation between the innovations to the trends in both sectors

was modest before the 1970s, but steadily rose during the Great Inflation. Thereafter, with

the 1980s disinflation, the correlation in both sectors fell steadily and is essentially close to

zero in the last two decades or so. We also show in Section A3 of the Online Appendix that

our results are robust to considering core inflation measures. At the same time, our main

result may also be more general than just the U.S. economy. In Section A6 of the Online

Appendix, the same patterns in Figure 3 emerge for Australia and Canada, both of which

are small open economies.

4 Comparison with Other Methods

There may be alternative approaches to conduct our analysis, including employing different

models, considering further data disaggregation, or making use of simpler data smoothing

methods. In the following sections, we compare our approach with these alternatives.

4.1 Univariate and Multi-Sector UC-SV Models

We begin by comparing our estimates of aggregate trend inflation relative to two approaches

in the broader literature, namely the univariate UC-SV model by Stock and Watson (2007)

(SW07 hereafter) and the multi-sector UC-SV factor model by Stock and Watson (2016)

(SW16 hereafter). For ease of comparison, we present the specifications of aggregate trend

inflation under these two alternative approaches compared to our approach:
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SW07:

{
τt = τt−1 + uτ

t uτ
t ∼ N (0, σ2

t ) , (13)

SW16:



τt =
17∑
i=1

wi,tτ
i
t s.t. τ it = αi

tτ
c
t + τ i,∗t ,

τ i,∗t = τ i,∗t−1 + ui,∗
t , τ ct = τt−1 + uc

t , αi
t = αi

t−1 + uαi

t ,

ui,∗
t ∼ N

(
0, σ2

t,τ i,∗

)
, uc

t ∼ N
(
0, σ2

t,τc

)
, uαi

t
i.i.d.∼ N

(
0, σ2

αi

)
,

ui,∗
t , uc

t , u
αi

t are mutually uncorrelated,

(14)

Two-Sector UC-SV:



τt =
∑

i∈{G, S}
wi,tτ

i
t s.t. τ it = τ it−1 + uτ i

t ,(
uτG

t uτS

t

)′
∼ N (0, Ωτ,t) ,

uτG

t , uτS

t are correlated.

(15)

From the expressions above, one can see that each model (or econometric strategy) implies

a different parametrization for aggregate trend inflation (τt). As shown in Equation (13),

SW07 defines τt as a latent univariate random walk process driven by an innovation, uτ
t ,

that exhibits time-varying volatility. In their setting, τt is extracted directly from headline

inflation. In contrast, SW16 and our framework model inflation subcomponents to recover

τt. In particular, τt is obtained as the weighted average of sector-specific trends, τ it , with the

weights being the nominal expenditure shares, wi,t, as discussed in Section 2. SW16 defines

τt as the aggregation of seventeen sub-components of PCE inflation, while we recover τt from

a more parsimonious, two-sector split.

The number of sectors, however, is not the key difference between our setting and SW16.

In principle, one could consider the 17 sectors using our approach or model two sectors using

the SW16 approach. However, the key difference is how comovement is specified. Building on

the dynamic factor approach by Del Negro and Otrok (2008), SW16 defines sector-specific

trends (τ it ) as the composition of three latent variables: (i) a common trend (or factor),

τ ct , that captures common (low-frequency) dynamics across all inflation subcomponents;

(ii) a time-varying loading, αi
t, that captures the importance of common dynamics to the

determination of each sector-specific trend; and (iii) an additional idiosyncratic trend component,
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τ i,∗t , that captures (low-frequency) dynamics at the subcomponent-specific level. The innovations

driving τ i,∗t , τ ct and αi
t are mutually uncorrelated, with stochastic volatility applied to model

the conditional variance of τ i,∗t and τ ct . More precisely, SW16 introduces a common trend

(τ ct ) to model sectoral comovement in terms of first-moment dynamics, while we specify the

same metric in terms of second-moment dynamics, captured by the time-varying covariance

matrix Ωτ,t described in Equation (6). Notably, the aforementioned state parametrization for

τt in SW16 entails estimating five state variables (τ i,∗t , τ ct , α
i
t plus two stochastic volatility

states) to recover each sector-specific trend. This contrasts with our two-sector model,

where each sector-specific trend corresponds to three state variables (i.e., estimating τ it plus

the conditional variance and conditional covariance associated with uτ i

t ). Section A5 in

the Online Appendix offers a more formal comparison between our approach and SW16,

but it suffices to note that in the two-sector case, our modeling strategy represents a more

parsimonious strategy than the factor-based approach by SW16. On the other hand, in the

seventeen-sector case, the number of states required to model covariances proliferates to the

point that the factor-based approach by SW16 then becomes the more parsimonious (and

computationally tractable) choice.

Implications for the Estimated Level of Aggregate Trend Inflation

Figure 5 presents the smoothed estimates of aggregate trend inflation obtained via our Two-

Sector UC-SV and the other two approaches. We include the 67% credible interval from

the Two-Sector UC-SV to provide a sense of the differences relative to these alternative

approaches once we account for estimation uncertainty in our approach. In general, our

Two-Sector UC-SV model produces aggregate trend inflation measures that are similar to

the other two approaches. In fact, the estimates of aggregate trend inflation from both the

SW07 and SW16 models have historically been largely within the credible interval of the

Two-Sector UC-SV. This similarity provides external validation for our approach since it

allows us to reproduce a key narrative of Stock and Watson (2007), namely the large fall in

both the level and variance of aggregate trend inflation in the 1970s.

That said, the end of the sample sees a key point of departure where the aggregate trend

inflation estimates from the SW07 and SW16 models rise and are beyond the estimation
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Figure 5: Estimated Aggregate Trend Inflation from Different UC-SV Models
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Notes: Headline inflation is the annualized quarter-on-quarter PCE inflation. SW07 and SW16 denote the
estimated aggregate trend obtained from the univariate UC-SV and multivariate UC-SV models by Stock
and Watson (2007) (Equation (13)) and Stock and Watson (2016) (Equation (14)), respectively. Two-
Sector UC-SV denotes the estimate aggregate trend obtained from our baseline model discussed in Section
2. The shaded area around the red solid lines denotes the 67% posterior credible interval associated with
the estimated trends from our model. The vertical shaded areas denote NBER recession dates.

uncertainty implied by the Two-Sector UC-SV. We make three observations on this front.

First, the rising headline inflation at the end of the sample can partly be traced to supply-

chain disruptions leading to elevated goods inflation. As a recurring theme throughout the

paper, estimates of aggregate trend inflation do not rise as much, since the Two-Sector UC-

SV is down-weighting the high goods inflation when determining aggregate trend inflation.

This follows from the fact that the Two-Sector UC-SV still interprets goods inflation as

largely transitory noise which contrasts to the other two approaches, where aggregate trend

inflation has risen markedly. Second, while it is not clear how much trend inflation has risen
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at the end of the sample, we show in section A4 of the Online Appendix, that the Two-

Sector UC-SV produces trend inflation estimates that are more consistent with measured

inflation expectations in 2021Q4, as also documented by Cascaldi-Garcia et al. (2022). Third,

we previously documented an unprecedented increase in estimation uncertainty at the end

of the sample. Once we consider the estimation uncertainty, there is substantial overlap

between the 90% credible interval for aggregate trend inflation estimates for all three models

at the end of the sample, and substantial overlap for even the 67% credible interval of the

Two-Sector UC-SV and SW07 model.

For completeness, we also conduct an out-of-sample forecasting exercise using the three

approaches. We present these results in Section A4 of the Online Appendix, but we note that

our Two-Sector UC-SV produces very similar (and in some instances even slightly superior)

forecasting performance relative to the other two models.16

In summary, perhaps the most important message from Figure 5 is that our Two-

Sector UC-SV produces very similar aggregate trend inflation estimates throughout the

sample compared to two alternative approaches. While the estimates diverge at the end

of the sample, it is challenging at this point to make any definitive statement given the

unprecedented estimation uncertainty of the level of trend inflation across all three models,

coupled with the unique economic circumstances at the end of the sample.

Implications for the Estimated Level of Sector-Specific Trend Inflation

We also compare the estimated trends for goods and services inflation obtained from each

of the three approaches. When using the univariate approach by SW07, we apply the

specification of τt in Equation (13) to the observable measure of inflation in the goods and

services sectors. To recover sector-specific trends at the two-sector level in the case of SW16,

we sum (using the expenditure shares) the eight and nine subcomponent-specific trends (i.e.,

τ i,∗t in Equation (14)) associated with the goods and services sectors, respectively. As shown

in Figure 6, all three approaches generate reasonably similar measures of sector-specific

trends. Analogous to the aggregate trend inflation results in Figure 5, the SW07 and SW16

16Section A3 of the Online Appendix also reports out-of-sample forecasting results where we fit the SW16
model to two sectors (i.e. goods and services) as in our baseline model.
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Figure 6: Sector-Specific Trends from Different UC-SV Models
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Notes: SW07 and SW16 denote the sector-specific trends obtained from the univariate UC-SV and
multivariate UC-SV models by Stock and Watson (2007) and Stock and Watson (2016), respectively. Two-
Sector UC-SV denotes the sector-specific trends obtained from our baseline model discussed in Section 2.
When using the univariate approach in SW07, we apply the specification of τt in Equation (13) to the
observable measure of inflation in the goods and services sectors. For SW16, sector-specific trends at the
two-sector level are recovered by summing (using the expenditure shares) the eight and nine subcomponent-
specific trends (i.e., τ i,∗t in Equation (14)) associated with the goods and services sectors, respectively. The
shaded area around the red solid lines denotes the 67% posterior credible intervals associated with the
estimated trends from our model. The vertical shaded areas denote NBER recession dates.

approaches suggest a more noticeable rise in sector-specific trends towards the end of the

sample, although the unprecedented estimation uncertainty associated with the COVID-19

pandemic once again makes it unclear about the precise level of the sector-specific trends

towards the end of the sample.
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Table 2: Decomposition of aggregate trend inflation volatility: results from different models
for selected periods (percentage contribution)

1975Q1
Model Goods Services Covariance
Two-Sector UC-SV 49.3 16.9 33.8

[35.7, 70.2] [11.9, 26.2] [13.7, 42.3]

SW16 81.3 18.5 0.2
[71.9, 97.8] [14.1, 27.8] [0.0, 0.5]

2019Q4
Model Goods Services Covariance
Two-Sector UC-SV 3.9 91.3 4.8

[1.5, 13.4] [71.3, 106.3] [-13.2, 20.0]

SW16 25.3 73.6 1.1
[11.5, 43.2] [55.7, 87.3] [0.2, 3.2]

2021Q4
Model Goods Services Covariance
Two-Sector UC-SV 5.0 90.1 4.9

[1.7, 18.2] [65.8, 106.3] [-16.0, 22.9]

SW16 38.6 60.6 0.8
[20.1, 59.3] [37.8, 78.9] [0.1, 2.6]

Notes: We report the contributions of goods, services, and covariance terms in Equation (12) to aggregate
trend inflation volatility with the posterior median and the 67% credible interval (squared brackets) as a
percentage of the volatility in the three selected periods (1975Q1 for the highest volatility period; 2019Q4
for the pre-COVID-19 period; 2021Q4 for the COVID-19 pandemic period). SW16 denotes the volatility
decomposition results obtained from the factor-based approach in Stock and Watson (2016) when applied to
a seventeen-sector split of inflation data. These results were computed using Equation A51 in Section A5.1.1
of the Online Appendix. Two-Sector UC-SV denotes the volatility decomposition results obtained from our
baseline UC model discussed in Section 2. These results were computed using Equation (12).

Implications for Decomposing the Variance of Aggregate Trend Inflation

Table 2 reports the contribution from the goods and services sectors to the overall volatility

of trend inflation from both the Two-Sector UC-SV and SW16 models. We report estimates

for the same dates used in the exercises for Table 1: 1975Q1 (i.e., peak volatility), 2019Q4

(last pre-COVID-19 observation) and 2021Q4 (last observation in our sample). In short,

using the SW16 model lends further support to the main finding that services inflation has

been the main driver of trend inflation variation in recent years. In addition, like our model,

Stock and Watson’s (2016) framework reinforces the idea that the goods sector had a larger

influence on trend inflation volatility in the 1970s.

We note some quantitative differences in the volatility decomposition between both
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approaches. These differences, in part, reflect the different parametrization of trend inflation

between both models, implying that the expression for the variance of aggregate trend

inflation takes a different algebraic form in the SW16 setting relative to our expression

in Equation (11) as discussed above. We present further details on how the different

parametrizations of trend inflation imply different expressions for decomposing the variance

of aggregate trend inflation in Section A5 of the Online Appendix. However, for now,

intuitively, the states associated with common trend dynamics in SW16 (i.e., τ ct , α
i
t, and

their corresponding conditional volatilities) play a similar role as the covariance term in our

decomposition in Equation (11).

Regardless, we conclude that the key takeaway from Figure 6 and Table 2 is that our

empirical finding on the importance of services inflation is neither specific to a particular

class of model nor contingent on the level of data disaggregation.

4.2 Year-on-Year Measures of Sectoral Inflation

Finally, while we adopt a UC model to estimate the sector-specific trends, simpler smoothing

approaches may lead to similar results. One approach commonly used by practitioners to

address this issue is to look at the 1-year sectoral inflation rates (i.e., 100 ×
[
pit − pit−4

]
,

where pit represents the log of the price index in sector i). Figure 7 reports these calculations

against our sector-specific trends. While reasonably similar for services inflation, the 1-

year measure for goods inflation is markedly different from our UC estimates in the latter

part of the sample. In particular, 1-year goods inflation fluctuates significantly more than

its UC (trend) counterpart, highlighting a potential drawback of using 1-year measures.

Moreover, 1-year measures are (by construction) more likely to produce sharp and short-

lived reversals, especially if the series is extremely volatile, which may seem counterintuitive

when considering long-run (or trend) dynamics. A clear example is the large (but quickly

reversed) drop in goods inflation during the 2008/09 financial crisis. To be clear, we are

not advocating that 1-year measures are uninformative to understand inflation dynamics

more broadly. Instead, we simply see the task of identifying the high- and low-frequency

components of inflation as one that warrants formalizing a signal extraction approach, which

a UC model does.
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Figure 7: Comparison Relative to the 1-year (year-on-year) Sector-specific Inflation Rate
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Notes: The dotted lines represent our posterior median estimate of the sector-specific trend with its associated
67% credible interval. 1-year sector-specific trend inflation is the year-on-year sector-specific inflation rate.
The shaded areas denote NBER recession dates.

5 Conclusion

We develop an empirical two-sector model of trend inflation to understand the role of the

goods and services sectors in explaining the dynamics of trend inflation. Our main finding

is that variation in aggregate trend inflation is now predominantly driven by that in services

inflation. This is a more recent occurrence, as before the 1990s, both the goods and services

sectors contributed to the variation in aggregate trend inflation, with goods inflation being

the main driver in the 1970s. A key change driving our main result is that, while overall

goods inflation has remained volatile, the variance of trend goods inflation has fallen so

sharply that we estimated trend goods inflation featuring little to no volatility since around
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the 1990s. That is, the change in dynamics for the trend for goods inflation has been the

most important driver of the decline in the volatility in overall inflation documented by Stock

and Watson (2007). Notably, our results are also robust to the inclusion of the COVID-19

pandemic, albeit with a caveat of a larger degree of estimation uncertainty.

While the main focus of this paper is to document new stylized facts about changes in

trend inflation volatility in the goods and services sectors and how these changes relate at

an aggregate level, the interpretation and policy implications of our results remain more

suggestive. First, because variation in goods inflation appears to be mostly transitory since

the 1990s and potentially represents foreign inflation (see, e.g., Kamber and Wong, 2020;

Luciani, 2020), it raises the issue of whether monetary policy should actively offset swings

in goods, or more broadly foreign, inflation. This is especially true given that there are

indications that goods and services inflation may respond very differently to monetary policy

(see Cœuré, 2019; Borio et al., 2021) and to the general state of business cycles (Stock and

Watson, 2020). Second, using more indirect evidence, Cecchetti et al. (2007) argue that

the conduct of monetary policy can explain the large fall in the volatility in aggregate trend

inflation. It is worth exploring whether one can reconcile the Cecchetti et al. (2007) narrative

to potentially draw a more direct link to the conduct of monetary policy in understanding

our key result. Third, our results may provide a starting point for considering cross-country

and global determinants of inflation. As we report in the Online Appendix, similar patterns

also hold for Australia and Canada, two small open economies, suggesting that our results

may reflect a broader phenomenon beyond just the U.S. economy. We leave these avenues

for future research.
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A1 Estimation Details

Estimation of the states in our model is carried out using precision sampling methods as in

Chan and Jeliazkov (2009). Under this approach, the signal extraction exercise operates on

a parametrization of the model in Section 2.1 where all observables and state variables are

stacked over t = 1, ..., T . For convenience, below we reproduce the stacked representation of

the two-sector UC model that we base our posterior sampler upon. Formally, we have

y = τ + ζ (A1)

Lττ = τ0 + uτ (A2)

Lhh = h0 + uh (A3)

Lγγ = γ0 + uγ (A4)


ζ

uτ

uh

uγ

 ∼ N




0

0

0

0

 ,


Σζ 0 0 0

0 Στ 0 0

0 0 Σh 0

0 0 0 Σγ



 , (A5)
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where:

y
(2T×1)

=

 (πG
1 , · · · , πG

T )
′

(πS
1 , · · · , πS

T )
′

 , τ
(2T×1)

=

 (τG1 , · · · , τGT )′

(τS1 , · · · , τST )′

 , h
(4T×1)

=


(hζ

G

1 , · · · , hζ
G

T )′

(hζ
S

1 , · · · , h
ζS

T )′

(hτ
G

1 , · · · , hτGT )′

(hτ
S

1 , · · · , hτST )′

 ,

γ
(2T×1)

=

 (γζ1 , · · · , γ
ζ
T )

′

(γτ1 , · · · , γτT )′

 ζ
(2T×1)

=

 (ζG1 , · · · , ζGT )′

(ζS1 , · · · , ζST )′

 uτ

(2T×1)
=

 (uτ
G

1 , · · · , uτGT )′

(uτ
S

1 , · · · , uτST )′

 ,

uh

(4T×1)


(uh

ζG

1 , · · · , uhζG

T )′

(uh
ζS

1 , · · · , uhζS

T )′

(uh
τG

1 , · · · , uhτG

T )′

(uh
τS

1 , · · · , uhτS

T )′

 , uγ

(2T×1)
=

 (uγ
ζ

1 , · · · , u
γζ

T )′

(uγ
τ

1 , · · · , u
γτ

T )′

 .

Initialization conditions are treated as additional parameters in our MCMC algorithm and

collected as follows:

τ0
(2T×1)

=

 τG0

τS0

⊗


1

0
...

0

 , h0
(4T×1)

=


hζ0

G

hζ0
S

hτ0
G

hτ0
S

⊗


1

0
...

0

 , γ0
(2T×1)

=

 γζ0

γτ0

⊗


1

0
...

0

 ,
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where ⊗ denotes the Kronecker operator. Next, the matrices pre-multiplying the vector of

states are sparse structures defined as follows:

Lτ
(2T×2T )

= Lγ =

 H 0

0 H

 , Lh
(4T×4T )

=


H 0 0 0

0 H 0 0

0 0 H 0

0 0 0 H

 , such that

H
(T×T )

=



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1
...

...
...

. . . . . .

0 0 · · · −1 1


.

Finally, each covariance matrix in the system is given by

Σℓ
(2T×2T )

=



exp(hℓ
G

1 ) · · · 0 γℓ1 exp(h
ℓG

1 ) · · · 0
...

. . .
...

...
. . .

...

0 · · · exp(hℓ
G

T ) 0 · · · γℓT exp(hℓ
G

T )

γℓ1 exp(h
ℓG

1 ) · · · 0 γℓ
2

1 exp(hℓ
G

1 ) + exp(hℓ
S

1 ) · · · 0
...

. . .
...

...
. . .

...

0 · · · γℓT exp(hℓ
G

T ) 0 · · · γℓ
2

T exp(hℓ
G

T ) + exp(hℓ
S

T )


,

(A6)

for ℓ = ζ and τ,

Σh
(4T×4T )

=


σ2
hζG

IT 0 0 0

0 σ2
hζS
IT 0 0

0 0 σ2
hτGIT 0

0 0 0 σ2
hτGIT

 , (A7)

Σγ
(2T×2T )

=

 σ2
γζIT 0

0 σ2
γτ IT

 , (A8)
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where IT denotes a T dimensional identity matrix.

A1.1 Priors

For convenience, we reproduce below the priors adopted in our study and discussed in Section

2.1 of the paper. Recall that there are three blocks of model parameters in our baseline Two-

Sector UC model, i.e.:

z0 =



τG0

τS0

hζ0
G

hζ0
S

hτ0
G

hτ0
S

γζ0

γτ0



, Ωh = diag
(
σ2
hζG , σ

2
hζG , σ

2
hτG , σ

2
hτG

)
, and Ωγ = diag

(
σ2
γζ , σ

2
γτ

)
.

We assume standard independent priors for each of these three blocks of parameters. More

precisely:

z0 ∼ N (ẑ0,Σz0) ,

σ2
γℓ ∼ IG

(
νγℓ , Sγℓ

)
,

σ2
hℓi ∼ IG

(
νhℓi , Shℓi

)
for ℓ = ζ and τ and i = G and S.

The choice of prior densities adopted in this paper are in line with previous studies on trend

inflation that also rely on UC-SV models (e.g., see Chan, Koop and Potter, 2013, 2016). We
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calibrate our priors as follows:

ẑ0 =
(
πG
1 , π

S
1 , 0, · · · , 0

)′
,

Σz0 = 100× I8,

νγℓ = T
10
,

Sγℓ = 0.22(νγℓ − 1),

νhℓi =
T
10
,

Shℓi = 0.22(νhℓi − 1) for ℓ = ζ and τ and i = G and S.

(A9)

Notably, the values assigned to Σz0 and to the shape parameters of the inverse-gamma

densities – νγℓ and νhℓi – reflect relatively uninformative priors.

A1.2 Posterior Sampler

Now let Z = {τ , h, z0, Ωh, Ωγ} denote the set of states and parameters in our Two-

Sector UC model, where notation Z−j represents all elements in Z except for j. An MCMC

algorithm for estimating such a model entails sequentially sampling from the following

conditional posterior distributions:

(1) f(τ |y,Z−τ ),

(2) f(h|y,Z−h),

(3) f(γ|y,Z−γ),

(4) f(z0|y,Z−z0),

(5) f(Ωh|y,Z−Ωh
),

(6) f(Ωγ|y,Z−Ωγ ).

Steps 1 through 3 above denote the state simulation block in our MCMC – i.e. drawing

the time-varying parameters. The remaining steps correspond to drawing from the full

conditional posteriors for the fixed parameters. Hence, we refer to steps 4 through 6 as the

parameter sampling block in our algorithm. Below, we describe these two main blocks in

5



greater detail.

A1.2.1 State Simulation

• Sampling τ

First note that Equations (A1) and (A2) denote a linear Gaussian state space representation.

Therefore, standard multivariate regression results (see, e.g., Koop, Poirier and Tobias

(2007)) can be used to show that the conditional posterior for τ is also Gaussian. More

precisely, we have:

τ |y,Z−τ ∼ N
(
dτ , Dτ

)
, where

dτ = Dτ

(
Σ−1

ζ y + L′
τΣ

−1
τ τ0

)
,

Dτ =
(
Σ−1

ζ + L′
τΣ

−1
τ Lτ

)−1
.

(A10)

As shown in the second equation in (A10), sampling τ entails inverting the 2T × 2T

matrix
(
Σ−1

ζ + L′
τΣ

−1
τ Lτ

)
to construct the covariance matrix Dτ . We do so by applying

precision sampling techniques proposed in Chan and Jeliazkov (2009), which provides an

efficient way to expedite computation.1

To illustrate how we employ their algorithm, we introduce the following notation: given

a lower triangular 2T × 2T non-singular matrix C and a 2T × 1 vector b, let C \ b denote

the unique solution to the triangular system Cx = b obtained by forward substitution, i.e.,

x = C \ b = C−1b. Sampling τ is then conducted by following the four operations below:

(1) Chol(D
−1

τ ) = CC′,

(2) x = C \
(
Σ−1

ζ y + L′
τΣ

−1
τ τ0

)
,

(3) dτ = C′ \ x,

(4) τ = dτ +C′ \ e e ∼ N (0, I2T ) .

The first step describes the Cholesky decomposition of the inverse covariance (or precision)

matrix D
−1

τ . Step 2 requires solving a triangular system by forward substitution, given that

1A detailed comparison between precision- and Kalman filter-based techniques for state simulation –
pointing out the benefits of the former over the latter – can be found in McCausland, Miller and Pelletier
(2011).
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C is a lower triangular matrix. Step 3 is analogous to Step 2, except that the solution

of the triangular system, C′ \ x, is now obtained by backward substitution, since C′ is an

upper triangular matrix. It is then straightforward to see that Steps 2 and 3 combined, by

construction, yield:

dτ = C′−1
(
C−1

(
Σ−1

ζ y + L′
τΣ

−1
τ τ0

))
= (CC′)

−1 (
Σ−1

ζ y + L′
τΣ

−1
τ τ0

)
= Dτ

(
Σ−1

ζ y + L′
τΣ

−1
τ τ0

)
.

Finally, Step 4 describes an affine transformation of standard normal random vector e which

ensures, by definition, that after sampling e ∼ N (0, I2T ), the expression in such a step

returns a 2T × 1 random vector τ |y,Z−τ ∼ N
(
dτ , Dτ

)
.

To further expedite computation, in addition to the precision sampling techniques, we

resort to an analytical solution – instead of brute-force methods – to obtain the inverse

matrices Σ−1
ζ and Σ−1

τ which are components of D
−1

τ and show up in Step 2 of the precision

sampling algorithm just described above. In particular, bothΣ−1
ζ andΣ−1

τ can be partitioned

into four block-diagonal matrices, as follows:

Σℓ =

 ΣℓG ΣℓG,S

ΣℓG,S ΣℓS

 , (A11)

where:

ΣℓG = diag
(
exp(hℓ

G

1 ), · · · , exp(hℓGT )
)
,

ΣℓS = diag
(
γℓ

2

1 exp(hℓ
G

1 ) + exp(hℓ
S

1 ), · · · , γℓ2T exp(hℓ
G

T ) + exp(hℓ
S

T )
)
,

ΣℓG,S = diag
(
γℓ1 exp(h

ℓG

1 ), · · · , γℓT exp(hℓ
G

T )
)
, for ℓ = ζ and τ.

Matrix inversion results discussed in, e.g., Anderson (1984) yield:

Σ−1
ℓ =

 (
ΣℓG −ΣℓG,SΣ−1

ℓS
ΣℓG,S

)−1 −
(
ΣℓG −ΣℓG,SΣ−1

ℓS
ΣℓG,S

)−1
ΣℓG,SΣ−1

ℓS

−Σ−1
ℓS
ΣℓG,S

(
ΣℓG −ΣℓG,SΣ−1

ℓS
ΣℓG,S

)−1 −Σ−1
ℓS
ΣℓG,S

(
ΣℓG −ΣℓG,SΣ−1

ℓS
ΣℓG,S

)−1
ΣℓG,SΣ−1

ℓS

 ,
for ℓ = ζ and τ .

It is worth noting that, despite the long algebraic expressions above, constructing each
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block matrix in Σ−1
ℓ only entails operations between diagonal matrices. As a result, an

analytical solution for Σ−1
ℓ can be readily derived.2 Specifically, we have

(I)
(
ΣℓG −ΣℓG,SΣ−1

ℓS
ΣℓG,S

)−1
= diag

(
γℓ

2

1 exp(hℓ
G

1 ) + exp(hℓ
S

1 )

exp(hℓ
G

1 + hℓ
S

1 )
, · · · , γ

ℓ2

T exp(hℓ
G

T ) + exp(hℓ
S

T )

exp(hℓ
G

T + hℓ
S

T )

)
,

(II) −Σ−1
ℓS
ΣℓG,S

(
ΣℓG −ΣℓG,SΣ−1

ℓS
ΣℓG,S

)−1
ΣℓG,SΣ−1

ℓS
=

= diag

(
γℓ

2

1 exp(2hℓ
G

1 )

γℓ
2

1 exp(2hℓ
G

1 + hℓ
S

1 ) + exp(hℓ
G

1 + 2hℓ
S

1 )
, · · · , γℓ

2

T exp(2hℓ
G

T )

γℓ
2

T exp(2hℓ
G

T + hℓ
S

T ) + exp(hℓ
G

T + 2hℓ
S

T )

)
,

(III) −
(
ΣℓG −ΣℓG,SΣ−1

ℓS
ΣℓG,S

)−1
ΣℓG,SΣ−1

ℓS
= −Σ−1

ℓS
ΣℓG,S

(
ΣℓG −ΣℓG,SΣ−1

ℓS
ΣℓG,S

)−1
=

= diag

(
γℓ

2

1 exp(hℓ
G

1 ) + exp(hℓ
S

1 )

exp(hℓ
G

1 + hℓ
S

1 )
, · · · , γℓT exp(hℓ

G

T )

exp(hℓ
G

T + hℓ
S

T )

)
, for ℓ = ζ and τ.

• Sampling h

To sample log-volatilities h, we combine the auxiliary mixture sampler approach of Omori

et al. (2007) with the precision sampling techniques previously described. To this end, note

first that we can reexpress equations (A1) and (A2) as

 y − τ

Lττ − τ0

 =

 Aζ 0

0 Aτ

 Λhζ 0

0 Λhτ

 ε,

 Aζ 0

0 Aτ

−1  y − τ

Lττ − τ0

 =

 Λhζ 0

0 Λhτ

 ε, (A12)

2We also conducted estimations where Σ−1
ζ and Σ−1

τ were constructed via brute-force inversion. Results,
as expected, are unchanged, albeit the MCMC sampler takes a bit longer to carry out state simulation.
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where

ε ∼ N (0, I4T ) ,

Aℓ =

 IT 0

diag
(
γℓ1, · · · , γℓT

)
IT

 , (A13)

Λhℓ =

 diag
(
exp(hℓ

G

1 ), · · · , exp(hℓGT )
)

0

0 diag
(
exp(hℓ

S

1 ), · · · , exp(hℓST )
)
 , (A14)

for ℓ = ζ and τ .

Next, let ỹτ and v denote the left- and right-hand side of Equation (A12), respectively.

Squaring and subsequently taking natural logarithms of each element in the 4T × 1 vectors

ỹτ and v leads to the following linear state space representation for h:

ỹ∗
τ = h+ ṽ, (A15)

Lhh = h0 + uh, (A16)

where the state equation for h comes from (A3). The system above – albeit linear – is

no longer Gaussian. More precisely, each entry in ṽ follows a log chi-square distribution

with one degree of freedom. To bring the state space representation back to Gaussian form,

Omori et al. (2007) suggest approximating the distribution of ṽ as a mixture of ten Normal

densities.3 Formally, let ṽ∗ denote such mixture approximation, i.e.:

ṽ∗ ∼ p1N (α1, Σ1) + · · ·+ p10N (α10, Σ10) ,

where αs, Σs and the component-density probabilities ps for s = 1, · · · , 10 are predetermined

and given in Table 1 in Omori et al. (2007). Therefore, for a given particular component-

density N (αs, Σs), the state space in (A15)-(A16) can be recast in (conditionally) Gaussian

3Their approach extends the seven-component auxiliary mixture sampling from Kim, Shephard and Chib
(1998).
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form as:

ỹ∗
τ = h+αs + ṽ∗

s , (A17)

Lhh = h0 + uh, (A18)

 ṽ∗
s

uh

 ∼ N

 0

0

  Σs 0

0 Σuh

 . (A19)

Given the parametrization above, our MCMC sampler needs to be augmented to sample

both h and the vector of component-density indicators, s. Formally, this entails sequentially

sampling from the following full conditional posterior distributions:4

Step 1 f(s|ỹ∗
τ ,Z),

Step 2 f(h|ỹ∗
τ ,Z−h, s).

•Step 1

The auxiliary sampler of Omori et al. (2007) allows each element of s = (s1, · · · , sT ) to be

drawn independently from a multinomial distribution parameterized by the full conditional

posterior probabilities Pr
(
st = i|ỹ∗τ,t, Zt

)
given by:

Pr
(
st = i|ỹ∗τ,t, zt

)
=

ψ (ht + αs=i, σ
2
s=i) ps=i∑10

j=1 ψ
(
ht + αs=j, σ2

s=j

)
ps=j

for i = 1, · · · , 10,

where ψ (ht + αs, σ
2
s) denotes a Gaussian density evaluated at mean ht + αs and variance

σ2
s . Again, αs and σ

2
s values are given in Table 1 in Omori et al. (2007). ht denotes posterior

draws obtained from (A20) as presented below.

Given Pr
(
st = i|ỹ∗τ,t, Zt

)
posterior draws for st can then be generated via the inverse

4Here, Steps 1 and 2 are consistent with the discussion in Del Negro and Primiceri (2015) that applies
more broadly for models with stochastic volatility.
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transform method for t = 1, · · · , T as follows:5

(a) Generate et ∼ Uniform(0, 1),

(b) Find the smallest i ∈ {1, 2, · · · , 10} that satisfies
∑i

j=1 Pr
(
st = j|ỹ∗τ,t, Zt

)
≥ et,

(c) Return
(
st|ỹ∗τ,t, Zt

)
= i.

•Step 2

h|ỹ∗,Z, s ∼ N
(
dh, Dh

)
, where

dh = Dh

(
Σ−1

s ỹ∗
α + L′

hΣ
−1
uhh0

)
,

Dh =
(
Σ−1

s + L′
hΣ

−1
uhLh

)−1
,

(A20)

where ỹ∗
α = ỹ∗

τ − h − αs. Draws from the density above are obtained using the precision

sampler of Chan and Jeliazkov (2009).

• Sampling γ

It’s easy to see that the innovations in (A1) and (A2) can be factorized as follows:

 ζ

uτ

 =

 Aζ 0

0 Aτ

 ζ∗

uτ
∗

 s.t. (A21)

 ζ∗

uτ
∗

 ∼ N

 0

0

 ,
 Λhζ 0

0 Λhτ

 .

Since (ζ, uτ )′ =
(
ζG, ζS, uτG , uτS

)′
and using the fact that both Aζ and Aτ have a

5See algorithm 3.2 in Kroese, Taimre and Botev (2013) for a more detailed discussion of the inverse
transform method for discrete random variables.
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block-lower triangular structure – as shown in (A13) – then (A21) can be recast as:


ζG

ζS

uτG

uτS

 =


ζζG

XγζζG + ζS
∗

uτG

XγτuτG + uτS

∗

 , (A22)

where Xγℓ = diag
(
γℓ1, · · · , γℓT

)
for ℓ = ζ and τ .

Given the block-lower triangular structure of Aζ and Aτ and the modular nature of

MCMC algorithms, one can collect the draws associated with the goods sector in τ and τ0 –

i.e. τG and τG
0 , respectively – to back out ζG = yG−τG and uτG = HτG−τG

0 . As a result,

these two vectors of innovations can be treated as predetermined controls in the second and

fourth equations in (A22). Similarly, we back out ζS and uτS on the left-hand side of (A22)

by setting ζS = yS − τ S and uτS = Hτ S − τ S
0 and treat these vectors of innovations as

regressands in a standard linear regression setting. Consequently, by a simple change of

variables, we can use the second and fourth equations in (A22) to obtain the following state

space representation for γ:6

eS = XeGγ + eS∗ , (A23)

Lγγ = γ0 + uγ (A24)

 eS∗

uγ

 ∼ N

 0

0

 ,
 ΣeS∗

0

0 Σγ

 , (A25)

6To be clear, we refer to the following change of variables: XγζζG and XγτuτG

can be equivalently

expressed as diag
(
ζG1 , · · · , ζGT

)
γζ and diag

(
uτG

1 , · · · , uτG

T

)
γτ , respectively.
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where: eS =

 ζS

uτS

, eS∗ =

 ζS
∗

uτS

∗

,

ΣeS∗
=

 diag
(
exp(hζ

S

1 ), · · · , exp(hζ
S

T )
)

0

0 diag
(
exp(hτ

S

1 ), · · · , exp(hτST )
)
 and

XeG =

 diag
(
ζG1 , · · · , ζGT

)
0

0 diag
(
uτ

G

1 , · · · , uτGT
)  .

Thus, standard regression results can be applied to the system in (A23)-(A25) to obtain

the following expressions for the full conditional posterior for γ:

γ|y,Z−γ ∼ N
(
dγ, Dγ

)
, where

dγ = Dγ

(
X′

eGΣ
−1
eS
eS + L′

γΣ
−1
γ γ0

)
,

Dγ =
(
X′

eGΣ
−1
eS
XeG + L′

γΣ
−1
γ Lγ

)−1
.

(A26)

Again, to obtain draws from the density above, we apply precision sampling methods.

A1.2.2 Parameter Sampling

• Sampling Ωh and Ωγ

Recall that both Ωh and Ωγ are diagonal covariance matrices. Therefore, variance

hyperparameters for the states h and γ can be sampled one by one from an inverse-gamma

density. Formally, we have:

σ2
γℓ|y,Z−σ2

γℓ
∼ IG

(
νγℓ , Sγℓ

)
, where


νγℓ = T

2
+ νγℓ ,

Sγℓ =

T∑
t=1

(
uγℓ

t

)2

2
+ Sγℓ for ℓ = ζ and τ,

(A27)
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and

σ2
hℓi |y,Z−σ2

hℓ
i
∼ IG

(
νhℓi , Shℓi

)
, where


νhℓi =

T
2
+ νhℓi ,

Shℓi =

T∑
t=1

(
uhℓ

i

t

)2

2
+ Shℓi for ℓ = ζ and τ and i = G and S,

(A28)

where uh
ℓi

t and uγ
ℓ

t are the innovations in state Equations (7) and (8), respectively, in Section

2.1.

• Sampling z0

Let L0 = I8 ⊗ ι0 where ι0 = (1, 0, · · · , 0)′. The state equations (A2), (A3) and (A4) can

then be expressed as

Lz = L0z0 + u, (A29)

where z =


τ

h

γ

 , L =


Lτ 0 0

0 Lh 0

0 0 Lγ

 and u =


uτ

uh

uγ

 ∼ N (0, Σu) , such that

Σu =


Στ 0 0

0 Σh 0

0 0 Σγ

 .

Combining (A29) with the Gaussian prior z0 ∼ N (ẑ0,Σz0) yields

z0|y,Z−z0 ∼ N
(
dz0 , Dz0

)
, where

dz0 = Dz0 (L
′
0Σ

−1
u Lz+Σz0 ẑ0) ,

Dz0 =
(
L′

0Σ
−1
u L0 +Σ−1

z0

)−1
.

(A30)
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A2 Robustness

A2.1 Prior Sensitivity

The state variables that model changes in the conditional (log-) volatility (i.e., hℓ
i
for ℓ =

ζ and τ and i = G and S) play a key role in our exercise. It is thus important to assess if

our main result is sensitive to the choice of priors adopted for the standard deviation of the

innovations governing the dynamics of hℓ
i
. We take two approaches to address this issue.

First, we set the scale hyperparameter of the associated inverse gamma prior to be up

to five times greater than that in the baseline UC model. Formally, we redefine Shℓi in (A9)

as Shℓi = κ0.22(νhℓi − 1) such that κ ∈ {2, 3, 4, 5}. In other words, we allow for priors

that are conducive to more flexible dynamics in the (conditional) variance of sector-specific

trends.

Second, we replace the above-mentioned inverse gamma priors with uniform priors, i.e.,

σ2
hℓi

∼ U(0, 1) for ℓ = ζ and τ and i = G and S. The motivation for this particular

check is twofold: (i) it mimics the prior choice of Stock and Watson (2016) for the same

parameter; and (ii) it is in line with the critique by Gelman (2006) on the use of inverse

gamma priors for variance parameters in the context of hierarchical models (such as ours).

More precisely, posterior estimates may be overly influenced by the steep descent around

zero that characterizes inverse gamma priors. Hence, the overall effect of such a feature

depends on the behavior of the likelihood function near the origin.

Figures A1 and A2 shows the decomposition of the volatility of aggregate trend inflation

(based on Equation (12) in Section 3.2 of the paper) that results from each of the prior

checks discussed above. In short, our main result (i.e., the variation of trend inflation being

dominated by services inflation since the 1990s) carries over to all prior-sensitivity checks

considered.
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Figure A1: Decomposition of Volatility of Aggregate Trend Inflation (Prior Check 1)
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Notes: for prior check 1 we redefine the scale hyperparameter of the inverse gamma prior

associated with (the variance of) the innovations driving all log-volatility states in (A9) as

Shℓi = κ0.22(νhℓi−1) such that κ ∈ {2, 3, 4, 5}. The components of aggregate trend inflation

are obtained using the decomposition presented in Equation (12) in the main text.
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Figure A2: Decomposition of Volatility of Aggregate Trend Inflation (Prior Check 2)
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Notes: for prior check 2 we replace inverse gamma priors used in prior check 1 with uniform

priors, i.e., σ2
hℓi

∼ U(0, 1) for ℓ = ζ and τ and i = G and S. The components of aggregate

trend inflation are obtained using the decomposition presented in Equation (12) in the main

text.

A2.2 Model Comparison: Allowing for Persistence in the Inflation

Gap

Recall that our baseline model assumes that the transitory component of inflation in each

sector follows a normally distributed serially uncorrelated process. To evaluate the ability of

such a specification to fit inflation data, we conduct a model comparison exercise where we

allow for persistence in the transitory component of (sector-specific) inflation. As discussed

in Section 2.1 of the main text, we propose two alternatives to model sectoral inflation gap,

cit, for i = G and S, namely – and similar to previous studies (e.g., see Chan, Koop and

Potter, 2013, 2016) – gaps are modeled as an AR(1) and as a time-varying parameter (TVP)

AR process, i.e.:
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• Two-Sector UC-SV-AR

cit = ϕict−1 + ζ it , for i = G and S. (A31)

• Two-Sector UC-SV-TVP-AR

cit = ϕi
tct−1 + ζ it , (A32)

ϕi
t = ϕi

t−1 + uϕ
i

t , uϕ
i

t ∼ N
(
0, σ2

ϕi

)
for i = G and S. (A33)

Table (A1) reports estimates of the log marginal likelihood, which is the metric for model

comparison we adopt. To compute the log marginal likelihood, we follow Geweke and

Amisano (2011) and carry out a recursive one-step-ahead forecasting exercise.7 Applying

the usual recommendations for interpreting the Bayes factor – i.e. the ratio between the

marginal likelihood from two competing models – as in, e.g., Raftery (1995), one can see

that there is very strong evidence in favor of our assumption to model sector-specific inflation

gaps a serially uncorrelated processes, thus reinforcing our choice to follow Stock and Watson

(2007) and Stock and Watson (2016) on how to model the transitory component of inflation.

Table A1: Model comparison results based on predictive simulations

Identifier Log Marginal Likelihood Estimates
Two-Sector UC-SV -2256.9
Two-Sector UC-SV-AR -2951.1
Two-Sector UC-SV-TVP-AR -2960.2

We have also examined whether assuming alternative specifications for the transitory

component of inflation would affect our main result. As shown in Figure (A3), introducing

persistence in the transitory component of (sector-specific) inflation leaves our main result

(i.e., since the 1990s variation in trend inflation has been driven almost entirely by the

services sector) virtually unchanged.

7In this forecasting procedure, we start from the fifth observation in our sample for each sectoral inflation
to reduce the sensitivity to priors.
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Figure A3: Decomposition of Volatility of Aggregate Trend Inflation Under Different
Specifications for the Inflation Gap
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Notes: The components of aggregate trend inflation are obtained using the decomposition

presented in Equation (12) in the main text.
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A2.2.1 Extensions to the Baseline MCMC Algorithm

To accommodate an AR transitory component, we slightly modify the stacked representation

in Equation (A1). In particular, for the Two-Sector UC-AR and Two-Sector UC-TVP-AR

models we express the measurement equation as

y = τ + c, (A34)

where

c
(2T×1)

=

 (cG1 , · · · , cGT )′

(cS1 , · · · , cST )′

 .

• Two-Sector UC-SV-AR

The only additional parameters in the case of the Two-Sector UC-AR model are the AR

coefficients for the sector-specific gaps. The (stacked) representation of the state equation

for c is given by

c = Xcϕ+ ζ, (A35)

where

Xcϕ
(2T×2) (2×1)

=



0 0

cG1 0
...

...

cGT−1 0

0 0

0 cS1
...

...

0 cST−1


︸ ︷︷ ︸

Xc

 ϕG

ϕS


︸ ︷︷ ︸

ϕ

.
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We employ a Gaussian prior for ϕ. Specifically, we set ϕ ∼ N (µϕ, Σϕ) such that µϕ =

(0.5, 0.5)′ and Σϕ = 10−3 × I2. Combining such prior with (A35) yields the following full

conditional posterior for ϕ:

ϕ|y,Z−ϕ ∼ N
(
dϕ, Dϕ

)
, where

dϕ = Dϕ

(
X′

cΣ
−1
ζ c+Σ−1

ϕ µϕ

)
,

Dτ =
(
X′

cΣ
−1
ζ Xc +Σ−1

ϕ

)−1
.

(A36)

• Two-Sector UC-SV-TVP-AR

When assigning a law of motion to the AR coefficients, the model is augmented by an

additional state equation plus two sets of parameters, namely the initial conditions for the

new state variables and variances for the innovations associated with such states. Formally,

we have:

c = Xcϕ+ ζ, (A37)

Lϕϕ = ϕ0 + uϕ, uϕ ∼ N (0, Σϕ) , (A38)

where

Xc
(2T×2T )

=

 diag
(
0, cG1 , · · · , cGT−1

)
0

0 diag
(
0, cS1 , · · · , cST−1

)
 , ϕ

(2T×1)

=

 (ϕG
1 , · · · , ϕG

T

)′(
ϕS
1 , · · · , ϕS

T

)′
 ,

Σϕ
(2T×2T )

=

 σ2
ϕGIT 0

0 σ2
ϕSIT

 , Lϕ
(2T×2T )

=

 H 0

0 H

 , such that: H
(T×T )

=



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1
...

...
...

. . . . . .

0 0 · · · −1 1


.

21



Initialization conditions for ϕ are collected as

ϕ0
(2T×1)

=

 ϕG
0

ϕS
0

⊗


1

0
...

0

 .

Combining (A37) and (A38) yields the following full conditional posterior for ϕ:

ϕ|y,Z−ϕ ∼ N
(
dϕ, Dϕ

)
, where

dϕ = Dϕ

(
X′

cΣ
−1
ζ c+ L′

ϕΣ
−1
ϕ ϕ0

)
,

Dτ =
(
X′

cΣ
−1
ζ Xc + L′

ϕΣ
−1
ϕ Lϕ

)−1
.

(A39)

Drawing from the density above is carried out using the precision sampling methods discussed

in Section A1.2.1. Finally, sampling {σ2
ϕG , σ

2
ϕS} and {ϕG

0 , ϕ
S
0 } follows the same steps as in

(A27) and (A30), respectively.
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A3 Additional Analysis on Transitory Components and

Core Inflation

A3.1 Time-Varying Volatility and Correlation of Transitory Components

Figure A4: Estimates of Time-Varying Volatility and Correlation of the Transitory-Noise
Innovations
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Notes: All (posterior median) estimates are plotted with their associated 67% posterior credible intervals.
The shaded areas denote NBER recession dates.

Figure A4 presents the estimated time-varying standard deviation of the innovations to

transitory components of goods and services inflation (i.e., std(ζGt ) and std(ζSt )), as well

as their estimated correlation between the two sectors. We do not observe any discernible

pattern with the volatility of the transitory component of services inflation, although we

note that it rises modestly towards the end of the sample. In contrast, the volatility of the
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transitory component for goods inflation has become increasingly volatile over time with two

noticeable peaks near the end of the sample corresponding to the Great Recession and the

COVID-19 pandemic. In conjunction with Figures 2 and 4 from the main text, Figure A4

also demonstrates that while goods inflation has always been relatively volatile, what has

changed in fact is the composition of the overall volatility. Unlike the 1970s, where the overall

volatility of goods inflation exhibited a substantial permanent component, since the 1990s

variation in goods inflation has been driven almost exclusively by the transitory component.

Turning to the time-varying correlation of the innovations to the transitory components,

our results suggest that comovement between transitory components in these two sectors

was fairly muted until the 2008/09 financial crisis. Since then, the comovement between the

transitory components has remained elevated and peaked during the COVID-19 pandemic.

This indicates that, unlike the Great Inflation of the 1970s, the comovement between goods

and services inflation during the last two recessions seems to be originated from the transitory

components. In the next subsection, we show that much of this (transitory component-

related) result can be attributed to volatile components such as food and energy prices.

A3.2 Core Inflation Measures

A3.2.1 Constructing Core Goods and Core Services Inflation Series

We consider excluding food and energy from goods and services. This would be closer to core

inflation since the Federal Reserve tracks PCE inflation excludes food and energy. The idea is

since energy and food are volatile components, the Federal Reserve treats these components

as noise and thus strips them out. To construct the core goods and core services inflation

series, we use data from the BEA Tables 2.3.4 (Price Indexes for Personal Consumption

Expenditures by Major Type of Product) and 2.3.5 (Personal Consumption Expenditures

by Major Type of Product). Specifically, we use the price indices and expenditure weights

for the following categories: (i) Goods; (ii) Services; (iii) Gasoline and Other Energy Goods

(which are energy components for goods); (iv) Food and beverages purchased for off-premises

consumption; and (v) Energy Goods and Services (which are energy components for both

goods and services). Notably, since a services-only energy component is not available, we
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construct such a measure by removing the energy components from the Energy Goods and

Services category. We then re-construct chain-weighted measures of the PCE deflator for

goods and services that exclude the food and energy components. The latter is carried out

by applying a Tornqvist formula – as suggested in Whelan (2002) – which is close to the

ideal Fisher formula.

Figure A5 plots the constructed core goods and core services inflation series. We also plot

the original goods and services inflation series for reference. Given that the food and energy

component of inflation is largely in goods, and less so in services, it is not so surprising

that the core goods inflation series deviates considerably from goods inflation. In particular,

goods inflation does inherit much of the volatility in food and energy inflation, which forms

Figure A5: Goods and Services Excluding Energy Inflation

1960 1970 1980 1990 2000 2010 2020

-20

-10

0

10

P
er

ce
nt

Goods Inflation Core Goods Inflation

1960 1970 1980 1990 2000 2010 2020

0

2

4

6

8

10

12

P
er

ce
nt

Services Inflation Core Services Inflation

Notes: Inflation in terms of annualized quarter-on-quarter inflation.
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part of our motivation for re-estimating our Two-Sector UC-SV model excluding the food

and energy components. Core services inflation, on the other hand, closely matches services

inflation due to the small share of energy and the absence of a food component in services

inflation.

A3.2.2 Results for Core Inflation

Figure A6: Estimated Conditional Standard Deviation and Correlation of Innovations (Ex-
food and energy)
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Figure A6 presents the estimated standard deviation of the innovations from reestimating

our model with goods ex-energy and food and services ex-energy and food. We also plot

the estimates from our baseline model in red. The top panel of Figure A6 presents the
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Figure A7: Decomposition of Volatility of Aggregate Trend Inflation (Ex-food and energy)
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Notes: Trend inflation is in units of annualized quarter-on-quarter inflation. Goods,
services, and covariance refer to the decomposition components of aggregate trend inflation,
as presented in Equation (12) in the main text. The shaded areas denote NBER recession
dates.

estimated standard deviation of the trend goods and services innovations, the middle panels

the transitory noise components and the bottom panels the estimated conditional correlation

of the trend and transitory noise innovations. In short, all the results are almost identical to

what we find in the main text except for the estimated standard deviation of the transitory

noise component of goods inflation. It is clear that most of what the transitory noise

component in goods was capturing in our benchmark model is energy and food prices. Figure

A7 is analogous to Figure 3 in the main text. Basically, the main result that almost all the

variation in aggregate trend inflation is dominated by the services sector is unchanged even
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if we exclude food and energy. While excluding food and energy has a meaningful impact on

the estimates of the noise component of goods inflation, our main results on trend inflation

in the main text are not affected by the inclusion or exclusion of food and energy prices.
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A4 Further Comparisons with Other Approaches

Following on from Section 4 of the main text, we present further comparisons of our Two-

Sector UC-SV relative to alternative approaches. These alternative approaches are the

univariate UC-SV by Stock and Watson (2007) (labelled SW07) and also the multi-sector

factor UC-SV by Stock and Watson (2016) (labelled SW16). In the main text, we compared

relative to the 17-sector version of the Stock and Watson (2016) model, but noted that one

is also able to model 2 sectors with their approach. We therefore also compare relative

to applying the multi-sector factor UC-SV approach to 2 sectors, the goods and services

sector, as per our baseline Two-Sector UC-SV. We remind the reader that the key goal of

comparing relative to the SW07 and 17-sector version of the SW16 model is to provide some

external validation to our approach, to the extent that one can still reconcile the aggregate

implications from both papers. We undertake two more exercises to externally validate our

Two-Sector UC-SV, comparison respective to measured inflation expectations and out-of-

sample forecasting.

A4.1 Comparison Relative to Measures of Inflation Expectations

Given the documented divergence of the trend inflation estimates at the end of the sample

presented in the paper, we compared our estimates of aggregate trend inflation relative

to survey inflation expectations. Figure A8 plots the posterior median estimates of trend

inflation of the various trend models against 1-year and 10-year ahead inflation survey

inflation expectations which we obtain from the Survey of Professional Forecasters (SPF).

Note that while we estimate trend inflation using PCE data, we compare our estimates to CPI

inflation expectations, which have a considerably longer history. We note that throughout

the COVID-19 pandemic and its aftermath, survey inflation expectations, while rising, are

slightly above 2% in 2021Q4, which is very close to the estimated trend inflation from the

Two-sector UC-SV model. On the other hand, trend inflation estimates from the SW07

and SW16 models deviate quite substantially from SPF forecasts at the end of the sample.

We do caution that this does not conclusively validate one trend inflation estimate as being

more credible than the other. We point out that trend inflation estimates have historically
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Figure A8: Comparison of Two-Sector UC-SV and univariate UC-SV against Survey Inflation
Expectations
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Notes: Shaded bars are NBER dated recessions. All units are in terms of annualized quarter-
on-quarter inflation. The posterior median estimates of trend inflation is obtained from
the various models and presented with with survey inflation expectations by the Survey of
Professional Forecasters.

deviated from survey inflation expectations, albeit by a smaller margin than during the

COVID-19 pandemic, so one should be cautious about putting too much weight on the

two-sector UC-SV trend inflation estimates being much closer to survey expectations.

Nonetheless, our exercise of comparing relative to survey inflation expectations does

suggest that the trend inflation estimates obtained by the two-sector UC-SV are not entirely

out of line with what one would expect from measured inflation expectations series during

the COVID-19 pandemic. Finally, we should remind the reader that given the divergence

happens at the end of the sample, the greater than usual degree of estimation uncertainty
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suggests the trend inflation estimates at the end of the sample may well end up being,

possibly heavily, revised in the future, which naturally suggests an avenue for future work

to resolve the Two-sector UC-SV and other models with the availability of more data in the

future.

A4.2 Forecasting Exercise

We also conducted an out-of-sample forecasting exercise for h-quarter ahead PCE inflation.8

More precisely, our out-of-sample uses only one vintage of the data (the vintage that we

used to do the estimation), and does not consider data revisions (which would require using

multiple sets of real-time datasets instead of the final vintage data). We use an expanding

window of one observation at a time of the same vintage of data to estimate trend inflation,

then use these estimates to forecast out-of-sample. We conduct the exercise for h = 4, 8, and

12, similar to Stock and Watson (2016), given trend inflation estimates are partly designed

to be good predictors of inflation in the medium to long term. These horizons coincide with

predicting the average inflation over a 1-year, 2-year, and 3-year ahead horizon.

Since the transitory component does not feature dynamics in all the models, the h-step

ahead forecast of inflation is always the current estimate of trend inflation. For multiple

sector models such as our Two-Sector UC-SV or SW16 model, we construct trend inflation

by using the time t consumption weights to aggregate all the sector-specific trend inflation

measures (i.e. see Equation (11) in the main text for the two-sector model). We then use

the median of the posterior distribution of aggregate trend inflation as our point estimate of

aggregate trend inflation and construct the point forecast for aggregate inflation.

Table A2 presents the results of the out-of-sample forecasting exercise. We report the out-

of-sample relative root mean squared error (RRMSE) relative to our Two-Sector UC-SV. We

compare two samples, 1980Q1-2021Q4 and a shorter evaluation period of 2000Q1-2021Q4.

Note that since these RRMSEs are relative to our Two-Sector UC-SV, numbers greater than

8To be precise, let pt be the natural log of the PCE index. We define annualized quarter-on-quarter
inflation, πt = 400× [pt−pt−1]. When we compute an h-step-ahead forecast, we are forecasting 1

h

∑h
j=1 πt+j

with the model estimated up to time t. This is equivalent to forecasting 1
h400 × [pt+h − pt], which is the

change in the price level from t to t + h, with a scaling factor to account for the annualization and the
horizon.
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Table A2: Forecasting Results

1980Q1-2021Q4
h SW07 SW16 (2 Sectors) SW16 (17 Sectors)
4 1.00 1.09 0.99
8 1.01 1.09 0.97
12 1.01 1.08 0.95*

2000Q1-2021Q4
h SW07 SW16 (2 Sectors) SW16 (17 Sectors)
4 1.03 1.17* 1.00
8 1.05 1.27 0.98
12 1.07*** 1.36 0.97

Notes: Results from out-of-sample forecasting exercise of inflation for two sample periods:
1980Q1-2019Q2 and 2000Q1-2021Q4. h refers to the forecast horizon. The results are
reported in terms of the relative root mean squared error of the inflation forecast relative to
the two-sector UC-SV model. Values greater than 1 indicate superior forecasting performance
of the two-sector UC-SV model. SW07 is the univariate UC-SV model by Stock and Watson
(2007). SW16 is the multi-sector UC-SV model by Stock and Watson (2016). 17 and 2 refer
to the number of sectors used in the multi-sector factor UC-SV model. ∗, ∗∗, and ∗∗∗ refers
to forecast being statistically different at a 10, 5, and 1% level of significance using a Diebold
and Mariano (1995) test.

1 indicate that our Two-Sector UC-SV produces more accurate forecasts.

In general, the forecasting performance across our Two-Sector UC-SV, the SW07 model,

and the 17-sector version of SW16 model are comparable. Nonetheless, we highlight four

findings from the forecasting exercise. First, the 2-sector version of the SW16 model forecasts

extremely poorly, with RRMSE up from 8 to 30% worse than our Two-Sector UC-SV. This

suggests that for a model that only considers the goods and services sector, our approach

is probably more appropriate than the SW16 approach. Second, we forecast very similarly

to both the SW07 and 17-sector version of the SW16 model though these forecasts are not

often statistically significant from the perspective of the Diebold and Mariano (1995) test.

That said, even if often not statistically significant, the Two-Sector UC-SV does in general

produce better point forecasts relative to the SW07 model and the 17-sector version of the

SW16 model does forecast better than the Two-Sector UC-SV. Third, moving from the

1980Q1-2021Q4 evaluation sample to the 2000Q1-2021Q4 evaluation sample, the forecast

performance of the Two-Sector UC-SV improves relative to both SW07 and the 17-sector
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version of the SW16 model. Relative to SW07, the Two-Sector UC-SV starts to outperform

the univariate SW07 model with a sample starting in 2000Q1. Relative to the 17-sector

version of the SW16 model, the forecasting performance narrows to the point that they

are indistinguishable. Fourth, it is known that aggregation of disaggregated forecasts can

lead to better forecasts of the aggregates as long as the misspecification is not large (for

further discussion, see Lutkepohl, 2006; Hendry and Hubrich, 2011). Indeed, our forecasting

results do suggest that our approach does better than the univariate SW07 model, especially

over the 2000Q1-2021Q4 period, and further disaggregation of using the 17-sector version of

the SW16 model does slightly better than us, suggesting that any misspecification with the

disaggregation from the SW07 to the Two-Sector UC-SV, and the Two-Sector UC-SV to the

17-sector version of the SW16 is probably small. Nonetheless, an analogous conclusion that

one may also draw is that given disaggregation leads to a large deterioration of the forecast

from the 2-sector version of the SW16 model, the 2-sector version of the SW16 model is

perhaps badly misspecified when compared to the Two-Sector UC-SV if one seeks to only

model the goods and service sector.

A4.3 Summary

Overall, further to what we document in the paper, we find further evidence that the

implications for aggregate trend inflation which we obtain from our two-sector UC-SV model

are comparable to those one obtains from another approach, apart from the end of the sample

during the COVID-19 pandemic. At the end of the sample, while we do urge caution in

interpreting the level of the estimates of aggregate trend inflation given the large degree of

estimation uncertainty, trend inflation estimates from our two-sector UC-SV model suggest

a more muted increase in trend inflation, and these trend inflation estimates are more in line

with what one observes from surveys of inflation expectations. On forecasting, we obtain

very similar forecasts to the SW07 and 17-sector version of the SW16 model.
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A5 Comparison and Reconciling with the Stock and

Watson (2016) Model

In this section we provide a discussion on how our UC-based approach relates to the (factor-

based) inferential framework adopted in Stock and Watson (2016). We first discuss matters

in a two-sector (i.e., goods and services) context and subsequently generalize the analysis to

a multisector environment.

The key ideas we want to convey in this section are: (i) in the context of a two-sector

split, by not overparameterizing the covariance matrix for sectoral-trend innovations, our UC

approach provides an inferential framework that is more robust to prior choice; and (ii) both

Stock and Watson (2016) and our UC-based approach provide inferential frameworks that

are more closely related than their state-space representations may lead one to believe. In

particular, we show that the difference between these two approaches can be established in

terms of the number of state variables in the covariance matrix for sectoral-trend innovations.

Such difference reflects contrasting strategies to model sectoral comovement. While we adopt

a time-varying correlation approach, as discussed in Section 2 of the main text, Stock and

Watson (2016) model comovement by introducing a common-trend that embeds stochastic

volatility and time-varying loadings.

A5.1 The Parametrization of Sectoral Trend Inflation in Stock

and Watson (2016)

For convenience, below we reproduce the representation of each sectoral trend inflation as

in Stock and Watson (2016) when applied to a goods and services split:

τGt = αG
t τ

c
t + τG,∗

t , (A40)

τSt = αG
t τ

c
t + τS,∗t . (A41)

The representation above defines the trend for each sector as the composition of three latent

variables: a common trend (or factor), τ ct , that captures common (low-frequency) dynamics
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between goods and services inflation; the time-varying loadings, αi
t for i = G and S, that

weight the importance of common dynamics in the determination sectoral trends; and a

sector-specific idiosyncratic trend component given by τ i,∗t , for i = G and S. All these state

variables are specified as random walk process, i.e.:

τ ct = τ ct−1 + uct s.t. uct ∼ (0, exp (hct)) , (A42)

τG,∗
t = τGt−1 + uG,∗

t s.t. uG,∗
t ∼

(
0, exp

(
hGt
))
, (A43)

τS,∗t = τSt−1 + uS,∗t s.t. uS,∗t ∼
(
0, exp

(
hSt
))
, (A44)

αG
t = αG

t−1 + uα
G

t s.t. uα
i

t
i.i.d.∼

(
0, σ2

αG

)
, (A45)

αS
t = αS

t−1 + uα
S

t s.t. uα
S

t
i.i.d.∼

(
0, σ2

αS

)
. (A46)

Next, note that the conditional variance of the innovations driving τ ct , τ
G,∗
t and τS∗t is also

time-varying, which introduces three additional stochastic-volatility states hct , h
G
t and hSt ,

i.e.:

hct = hct−1 + ηh
c

t s.t. ηh
c

t
i.i.d.∼

(
0, σ2

hc

)
, (A47)

hGt = hGt−1 + ηGt s.t. ηGt
i.i.d.∼

(
0, σ2

G

)
, (A48)

hSt = hSt−1 + ηSt s.t. η
S
t

i.i.d.∼
(
0, σ2

S

)
. (A49)

A5.1.1 The Decomposition of Aggregate Trend Inflation Volatility

Given the representation of sectoral trends discussed above, we now discuss how this can be

used to compute the decomposition of aggregate trend inflation volatility for which results

are reported in Table 3 of the main text. Since the parameterization of aggregate and

sector-specific trends by Stock and Watson (2016) is different than the one in our two-sector

setting, the volatility decomposition from their factor-based framework will have a different

algebraic expression than ours in Equation (12) of the main text. Nevertheless, just like in our

approach, one can decompose the overall variation of trend inflation into three components,

namely a covariance, a goods-specific volatility and a services-specific volatility term. To
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this end, note first that we can approximate trend inflation (τt) as follows:
9

τt ≈
∑

i∈{G, S}

wi
tτ

i
t =

∑
i∈{G, S}

wi
t

(
αi
tτ

c
t + τ i∗t

)
, (A50)

where wi
t denotes the sector-specific expenditure share. Next, let V(•) denote the conditional

variance operator. Assuming wi
t are given, applying V(•) to the expression for τt in Equation

(A50) yields:10

V (τt) ≈
∑

i∈{G, S}

(
wi

t

)2
V
(
αi
tτ

c
t

)
+

∑
i∈{G, S}

(
wi

t

)2
V
(
τ i∗t
)
,

=
∑

i∈{G, S}

(
wi

t

)2 [
V
(
αi
t

)
V (τ ct ) + V

(
αi
t

)
E2 (τ ct ) + V (τ ct ) E

2
(
αi
t

)]
+

∑
i∈{G, S}

(
wi

t

)2
V
(
τ i∗t
)
,

=

Covariance︷ ︸︸ ︷∑
i∈{G, S}

(
wi

t

)2 [
σ2
αi exp (hct) + σ2

αi

(
τ ct−1

)2
+ exp (hct)

(
αi
t−1

)2]
+

Goods︷ ︸︸ ︷(
wG

t

)2
exp

(
hGt
)
+

Services︷ ︸︸ ︷(
wS

t

)2
exp

(
hSt
)
.

(A51)

To be clear, we refer to the term inside the summation of the last expression above as

‘Covariance’ since it consists exclusively of the states associated with the common trend

across sectors. From (A43) and (A44), it is easy to see that the remaining two terms capture

the contribution from sector-specific volatilities.

We now turn to demonstrate why the additional flexibility in the representation given by

(A40)-(A49) is less desirable in the context of a two-sector state space model relative to our

Two-Sector UC-SV approach.

9Again, the term ‘approximation’ here follows from the fact that there are no weights for the components of
the PCE price index. Therefore, as in Stock and Watson (2016), aggregation relies on approximating sectoral
weights using nominal expenditure shares for the goods and services components out of total (nominal) PCE.

10As in our model, Stock and Watson (2016) also specify the state variables as random walks, hence the
use of conditional moments to construct second-moment based decompositions.
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A5.2 On the Appropriateness of the UC Approach in a 2-Sector

Setting

To fix ideas, note that by substituting Equations (A42) and (A43) into (A40) and, similarly,

(A42) and (A44) into (A41) allows us to reexpress τGt and τSt as follows:11

τGt = αG
t τ

c
t−1 + τG∗

t−1 +

uτG,SW

t︷ ︸︸ ︷
αG
t u

c
t + uG,∗

t , (A52)

τSt = αS
t τ

c
t−1 + τS∗t−1 +

uτS,SW

t︷ ︸︸ ︷
αS
t u

c
t + uS,∗t . (A53)

Next, since both τGt and τSt share a common innovation, uct , the composite error terms

uτ
G,SW

t and uτ
S,SW

t are correlated and, consequently, akin to our UC approach, exhibit a full

covariance matrix. In other words, their joint distribution can be expressed as:

 uτ
G,SW

t

uτ
G,SW

t

 ∼ N


 0

0

 ,
ΩSW

τ,t︷ ︸︸ ︷ σ2
τG,t στ,t

στ,t σ2
τS ,t


 , (A54)

where:

ΩSW
τ,t =

 (αG
t

)2
exp (hct) + exp

(
hGt
)

αG
t α

S
t exp (h

c
t)

αG
t α

S
t exp (h

c
t)

(
αS
t

)2
exp (hct) + exp

(
hSt
)
 . (A55)

From (A54), it is clear that ΩSW
τ,t has the same number of (unrestricted) second moments as

in our UC setting. Also, as shown in (A55), the factor-based approach by Stock and Watson

(2016) elicits five states (i.e. αG
t , α

S
t , h

c
t , h

G
t and hSt ) to capture the three time-varying

moments in ΩSW
τ,t , hence overparameterizing the latter. In contrast, our UC-based approach

provides a more parsimonious parameterization of such a covariance matrix, as we elicit three

states to model the same three time-varying second moments. To illustrate this point more

11Through the remainder of this section we will at times use the superscripts SW and EUW to refer to
Stock and Watson (2016) and our framework, respectively.
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clearly, for convenience, below we reproduce the UC representation of the sectoral trends

discussed in Section 2 of the main text:

τGt = τGt−1 + uτ
G,EUW

t , (A56)

τSt = τSt−1 + uτ
S,EUW

t . (A57)

 uτ
G,EUW

t

uτ
G,EUW

t

 ∼ N


 0

0

 ,
ΩEUW

τ,t︷ ︸︸ ︷ σ2
τG,t στ,t

στ,t σ2
τS ,t


 , (A58)

where:

ΩEUW
τ,t =

 1 0

γτt 1

 exp
(
hτ

G

t

)
0

0 exp
(
hτ

S

t

)
 1 γτt

0 1

 . (A59)

From (A58) and (A59), one can see that the three (conditional) second-moment moments

σ2
τG,t, σ

2
τS ,t and στ,t are governed by three state variables hτ

G

t , hτ
S

t and γτt .

Notably, the overparametrization of ΩSW
τ,t in (A55) is a consequential issue. First, as

shown in Table A2, applying the factor-based framework by Stock and Watson (2016) to a

two-sector setting weakens the forecasting performance relative to our UC-based strategy,

with our approach leading to gains in 12-quarter-ahead forecasting of up to 36%. Second

(and related to the previous point), ‘redundant’ states may be weakly identified, a issue that

can be examined in terms of prior sensitivity (or lack thereof) for some results of interest.

We thus investigate the extent to which estimation of sectoral trends may be sensitive to

prior calibration in both our Two-Sector UC-SV setting and in the factor-based framework

of Stock and Watson (2016), the latter also applied to a two-sector setting.

In keeping with our prior-sensitivity exercise in Section A2.1, we address prior sensitivity

in terms of different calibrations for the inverse gamma prior. However, unlike exercise in

Section A2.1, we now focus on the shape hyperparameter of the inverse gamma prior as it
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controls the (shape of the) tail of such a distribution, hence allowing to change the degree of

prior informativeness more directly.12 Also, as discussed in Stock and Watson (2016), in the

context of their model, the inverse gamma prior is associated with the (standard deviation

of the) innovations driving the time-varying loadings (αG
t and αS

t ) in Equations (A45) and

(A46). Importantly, as shown in (A55), these two states parameterize changes in ΩSW
τ,t .

The bottom panel of Table A3 reports prior sensitivity-related results. In particular, we

report the mean squared error (MSE) associated with the estimation of the sectoral trends

obtained from both the UC and factor-based approaches. To be clear, the MSEs in Table A3

are obtained as follows: trends for goods and services inflation are first estimated using the

baseline calibration to the shape parameters for the relevant inverse gamma priors, i.e., T/10

as shown in (A9). We then re-estimate both models under a much tighter parametrization of

the inverse gamma prior, where shape parameters are set to 106. This produces a new set of

trend estimates (again, posterior medians) for each sector, which are then compared against

our baseline estimates to compute the MSEs for each sectoral trend reported in Table A3.

To be clear, the measure of ‘error’ used to computed the MSEs refers to the difference

between the same sectoral trend estimated under the two prior calibrations described above.

The ideas is a simple one, the less sensitive to prior calibration a model is, the closer to

zero trend-related MSEs should be. In this regard, the MSEs corresponding to the model by

Stock and Watson (2016) are much greater than the ones obtained from our UC setting. For

goods inflation, in particular, the MSE from their model is approximately 103 greater than

its counterpart from our model, indicating that (at least within the context of a two-sector

analysis) our inferential framework is more robust to prior choice.

12Specifically, higher (lower) values of the shape hyperparameter imply thinner (fatter) tails, i.e., more
informative (diffuse) priors.
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Table A3: Parametrization of the covariance matrix for sectoral-trend innovations (Ωi
τ,t for

i = EUW and SW ) and prior sensitivity-related results based on our framework (EUW)
and the factor approach in Stock and Watson (2016) (SW) in a 2-sector setting.

Parametrization of Ωi
τ,t

Identifier # of second-moments in Ωi
τ,t # of states used to parameterize Ωi

τ,t

EUW 3 3

SW 3 5

MSE for trend estimates under two prior calibrations

Identifier Goods Services

EUW 0.0008 0.0002

SW 0.8428 0.0119

Notes: MSE stands for mean squared error.

A5.3 Reconciling UC- and Factor-Based Approaches More Broadly

We now extend the comparison between Stock andWatson (2016) and our UC-based approach

to the case where both frameworks are applied to a general multisector state-space setting.

Therefore, in what follows we replace the superscripts ‘G’ and ‘S’ in the system (A40)-(A49)

by the superscript ‘i’ to denote any sector i = 1, ..., N . The superscript ‘c’ is preserved to

denote the common trend (or factor) within an N-sector setting.

Next, using the fact that Stock and Watson (2016) sets τ c0 = 0, note that we can recast

equations (A40) through (A49) more compactly (and adjusted to an N-sector framework)

according to the following stacked representation:

τ SW = Λτ c + τ ∗, (A60)

Lτ ∗ = τ0 + u∗, (A61)

Hτ c = uc, (A62)

u∗ ∼ N
(
0,ΣSW

∗
)
, (A63)

uc ∼ N
(
0,ΣSW

c

)
, (A64)
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where:

τ SW

(NT×1)
=


(
τ 1,SW1 , · · · , τ 1,SWT

)′
...(

τN,SW
1 , · · · , τN,SW

T

)′
 , τ ∗

(NT×1)
=


(
τ 1,∗1 , · · · , τ 1,∗T

)′
...(

τN,∗
1 , · · · , τN,∗

T

)′
 , u∗

(NT×1)
=


(
u1,∗1 , · · · , u1,∗T

)′
...(

uN,∗
1 , · · · , uN,∗

T

)′
 ,

Λ
(NT×T )

=


diag (α1

1, · · · , α1
T )

...

diag
(
αN
1 , · · · , αN

T

)
 , H

(T×T )
=



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1
...

...
...

. . . . . .

0 0 · · · −1 1


, L

(NT×NT )
=


H 0 · · · 0

0 H 0
...

. . .
...

0 0 · · · H

 ,

τ c

(T×1)
= (τ c1 , · · · , τ cT )

′ , τ0
(NT×1)

=
(
τ ∗,10 , · · · τ ∗,N0 , 0, · · · , 0

)
, uc

(T×1)
= (uc1, · · · , ucT )

′ ,

ΣSW
∗

(NT×NT )

=


diag

(
exp

(
h11
)
, · · · , exp

(
h1T
))

0 · · · 0

0
. . . 0

...
. . .

...

0 0 · · · diag
(
exp

(
hNt
)
, ..., exp

(
hNT
))

 and

ΣSW
c

(T×T )

= diag (exp (hc1) , · · · , exp (hcT )) .

From (A61) and (A62) we, respectively, have: τ ∗ = L−1τ0 + L−1u∗ and τ c = H−1uc. It

is then easy to verify that by plugging the right-hand side of the last two expressions into

(A60) and by a simple change of variable, τ̃0 = L−1τ0, we obtain the following stacked (and

more compact) representation for the system in (A60)-(A64), summarized in the box below:
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Stacked representation of sectoral trends in Stock and Watson (2016)

τ SW = τ̃0 + uτ,SW , (A65)

uτ,SW ∼ N (0,

ΣSW
τ︷ ︸︸ ︷

Λ̃ΣSW
c Λ̃′ + L−1ΣSW

∗ L−1′), (A66)

where uτ,SW = Λ̃uc + L−1u∗ and Λ̃ = ΛH−1. We discuss the composite parametrization of

ΣSW
τ in (A66) in greater detail below. But before doing this, it is useful to establish that our

UC-based framework also delivers a similar stacked representation for the sectoral trends as

in the box above. To this end, note that, as shown in Section A1, our framework also allows

to cast sectoral trends more compactly as follows:

LτEUW = τ0 + uτ , (A67)

uτ ∼ N (0, Στ ) , (A68)

where τEUW collects terms exactly like τ SW . Similarly, L and τ0 are defined as in (A61).

Now recall that, instead of introducing a common trend across N sectors (as in Stock

and Watson (2016)), our UC framework absorbs common sectoral dynamics in the form of

mutually correlated innovations, which is directly applied to the vector of innovations uτ .

As a result, given the stacked representation for uτ , the covariance matrix Στ in (A68) for

a N-sector UC model is given by:

Στ =


Σ1,1 Σ1,2 · · · Σ1,N

Σ2,1 Σ2,2
. . .

...
...

. . .
. . . ΣN−1,N

ΣN,1 · · · ΣN,N−1 ΣN,N

 =

ΣEUW
c︷ ︸︸ ︷

0 Σ1,2 · · · Σ1,N

Σ2,1 0
. . .

...
...

. . .
. . . ΣN−1,N

ΣN,1 · · · ΣN,N−1 0

+

ΣEUW
∗︷ ︸︸ ︷

Σ1,1 0 · · · 0

0 Σ2,2
. . .

...
...

. . .
. . . 0

0 · · · 0 ΣN,N

,

(A69)

whereΣi,i = diag
(
σ2
τ i,1, · · · , σ2

τ i,T

)
andΣi,j = diag

(
στ i,j ,1, · · · , στ i,j ,T

)
for i and j = 1, ..., N

such that i ̸= j. As a result, we can recast the system in (A67)-(A68) as in the box

below:
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Stacked representation of sectoral trends in our framework

τEUW = τ̃0 + uτ,EUW , (A70)

uτ,EUW ∼ N (0,

ΣEUW
τ︷ ︸︸ ︷

L−1ΣEUW
c L−1′ + L−1ΣEUW

∗ L−1′), (A71)

where uτ,EUW = L−1uτ and τ̃0 = L−1τ0.

A few comments are in order. First, by comparing Equations (A65) and (A70) it is easy

to see that both vectors τEUW and τ SW are similarly parameterized in terms of a vector

collecting initial conditions (τ̃0) and a multivariate normally distributed error term. It is

then perhaps not too surprising that both our approach and Stock and Watson (2016) deliver

somewhat similar results in Section 4.1 of the main text.

Second, by comparing (A66) and (A71), it can be seen thatΣSW
τ andΣEUW

τ are decomposed

in a very similar fashion, i.e., they both denote the sum of two quadratic forms, where the

first quadratic form captures commonalities (or covariances) across sectors and the second

captures sector-specific variances. The latter quadratic form, in particular, shares the exact

same structure in both our UC framework and Stock and Watson (2016). Consequently, the

key distinction between the two approaches ultimately boils down to the choice of modeling

the first quadratic form in (A66) and (A71) or, more specifically, the number of states one

wants to introduce into the model to parameterize comovement. To illustrate, in an N-

sector setting, our UC model requires N(N − 1)/2 additional states to model L−1ΣEUW
c L−1′

in (A71), whereas the approach in Stock and Watson (2016) requires N +1 additional states

to model Λ̃ΣSW
c Λ̃′ in (A66). It is easy then easy to verify that when N = 2, as in the setting

for goods and services, the UC approach is a more parsimonious option, as it introduces only

a single additional state to model common dynamics between trend inflation in the goods

and services sectors, whereas the framework in Stock and Watson (2016) entails three states

to capture the same moment. However, when N is larger, say, seventeen, the number of

states required to model comovement in our UC-based framework proliferates. Specifically,

it would require 136 additional states to parameterize L−1ΣEUW
c L−1′ . Therefore, modeling

comovement via time-varying correlations, as in our setting, makes estimation virtually

prohibitive from a computational stance. In contrast, the factor approach by Stock and
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Watson (2016) only requires 18 states to model comovement in Λ̃ΣSW
c Λ̃′ when N = 17 thus

providing a more parsimonious and computationally tractable strategy.
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A6 International Evidence

We apply our model to international data to explore whether our results are generalizable. To

this end, we estimated our model using data on Australia and Canada.13 For Australia, our

sample covers 1976Q1-2021Q4, and for Canada, 1961Q2-2021Q4.14 We stress that we did not

set out to explore Australia and Canada specifically. The choice of sample was driven purely

by limitations of the data coverage for other comparable economies. Nevertheless, Australia

and Canada do possess some interesting features, which at least mark them out as useful

points of comparison relative to our benchmark results for the U.S. First, both countries had

similar inflation experiences to those of the U.S., in the sense that the Great Inflation saw

very high inflation rates, which then fell and became very stable in the 1990s. In particular,

the Reserve Bank of Australia and Bank of Canada adopted explicit inflation targets in

1997 and 1992, respectively. In the U.S., the inflation target was implicit until it was made

explicit in 2012. Therefore, a comparison with the U.S. can provide some perspective on

whether our key results are U.S.-specific, or perhaps can be extended to different inflation-

targeting regimes. Second, as small open economies that do not have much pricing power

in the international goods market, goods and services reflecting the traded versus nontraded

dichotomy is perhaps much sharper for Australia and Canada. This feature at least allows

us to form a firmer view on the globalization of inflation hypothesis through the lens of our

framework.

Figure A9 presents the decomposition of the variance from the innovations to trend

inflation for both Australia and Canada using Equation (12) in the main text. Similarly to

the U.S., we find that while all three components contributed to the variation in aggregate

trend inflation during the 1980s, and even part of the 1990s for Australia, the variation in

aggregate trend inflation in both countries since around the 1990s has been dominated by

13A major challenge when seeking international evidence is that few economies retain long time series of
goods and services inflation that are either constructed using a consistent methodology or have been rendered
consistent by their respective statistical agencies to the level of the U.S. data. For example, for the UK, we
are unable to go back beyond 1981, and for New Zealand, 1987. It is important to have long time series
because the thrust of our key results is to make comparisons relative to the period of the Great Inflation in
the 1970s. At a minimum, we require the sample coverage of the international data to at least include the
rise and then fall of inflation in order to compare them with our key results for the U.S.

14Details on how we construct the goods and services deflator for both economies are provided in Section
A6.1 of this appendix.
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Figure A9: Decomposition of Volatility of Aggregate Trend Inflation for Australia and
Canada
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Notes: Trend inflation is in units of annualized quarter-on-quarter inflation. Goods,
services and covariance refer to the decomposition components of aggregate trend inflation,
as presented in Equation (12) in the main text.

that in trend services inflation. In particular, this result is once again driven by the goods

and covariance component no longer contributing to the overall variation in aggregate trend

inflation.

Therefore, given similar patterns observed in both Australia and Canada, we conclude

that our findings are not a U.S.-specific phenomenon. As we mentioned at the outset of

this section, both Australia and Canada are small open economies. Thus, more so than the

U.S., they are price takers in the international goods market, and their services sectors likely

reflect their domestic economic environments.
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A6.1 Construction of Goods and Services Deflators for Australia

and Canada

Australia does not provide a goods and services breakdown. We construct the goods and

services deflators by once again using the Household Final Consumption Expenditure in the

quarterly national accounts, provided by the Australian Bureau of Statistics (ABS).15 The

breakdown of consumption expenditure for goods and services in Australia is not reported.

Instead, categories for consumption expenditure is reported. We classified the following as

services: Rent and other dwelling services, Electricity, gas and other fuel, Furnishings and

household equipment, Health Operation of vehicles, Transport services, Communications,

Recreation and culture, Education services, Hotels, cafes and restaurants, and Insurance

and other financial services. We then obtain the value of goods by subtracting the sum of

these services categories. For both goods and services, we create nominal and real price

series by taking the appropriate categories from the ABS tables: the seasonally current

prices (nominal) and seasonally adjusted chain-weighted volume measure (real). We then

create the deflators by dividing the nominal measure by the real measure, then multiplying

by 100. Sector-specific inflation rates are then obtained by once again taking the annualized

difference of the natural logarithms.

Statistics Canada reports, as part of its quarterly national accounts, a breakdown of

goods and services in its household final consumption expenditure.16 This breakdown means

that the structure of the Canadian data exactly mimics the U.S. data. We create sector-

specific deflators by dividing the measure of the current price by the measure of the real

price. The sector-specific inflation rates are then constructed using the annualized difference

of the natural logarithm of the deflator, which once again corresponds approximately to

annualized quarter-on-quarter percentage point change in the sector-specific deflator.

15See https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/5206.0Mar%202020?OpenDocument

for an example of a March 2020 release of the national accounts.
16See http://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3610012401
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A6.2 Other Australia and Canada Results

To present results analogous our main results, Figures A10 and A11 present estimates of

the standard deviation of the trend components of inflation for both Australia and Canada,

as well as the estimated conditional correlation. In general, we observe the hump-shaped

pattern in volatility as we see in the U.S. We also see the conditional correlation peak

during the 1970s and 1980s for Canada and Australia, respectively, before this correlation

disappeared in the 1990s. One difference is that the correlation is not very precisely estimated

for Australia, with the 67% posterior credible set always containing zero. For completeness,

we also present the estimated aggregate trend inflation estimates as well as the estimated

sectoral trend inflation estimates in Figures A12 and A13.

The implication of all these results is that, like the U.S., both Australia and Canada

have seen the composition of variation in aggregate trend inflation change from being shared

between goods and services to, since the 1990s, being almost fully dominated by variation

in trend services inflation.
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Figure A10: Estimated Conditional Standard Deviation and Correlation of Innovations -
Canada
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Figure A11: Estimated Conditional Standard Deviation and Correlation of Innovations -
Australia
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Figure A12: Estimated Trend Inflation - Australia
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51



Figure A13: Estimated Trend Inflation - Canada
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